New Horizon of Education

DOI URL:https://doi.org/10.63944/krg. NHE2-1
Vol.2 No.1

Development of a Practical Plan to Improve Basic
Programming Skills for Third-Grade Primary School
Students: A Case Study of Xincheng Primary School in
Lingui District

Zhaohong Yang, Nipaporn Khamcharoen®
Faculty of Education, Dhonburi Rajabhat University
Bangkok, Thailand | 276536721@qq.com

*Corresponding Author: Nipaporn Khamcharoen, Faculty of Education, Dhonburi
Rajabhat University Bangkok, Thailand | nipaporn.k@dru.ac.th

Copy Right, NHE, 2026, All rights reserved.

Abstract: With the global emphasis on programming education, cultivating primary school
students’ basic programming skills has become a key component of quality-oriented
education. This study aims to investigate the opinions of third-grade students at Xincheng
Primary School in Lingui District on improving basic programming skills and develop
targeted academic administration practical plans. A mixed-method research design was
adopted, including a questionnaire survey of 184 third-grade students and focus group
discussions with 5 experts. The questionnaire, validated by experts (IOC: 0.67-1.00) with
high reliability (Cronbach’s 0=0.895), was used to collect data on students’ general
information and their perceptions of programming learning. Quantitative data analysis
employed percentage, mean, and standard deviation, while qualitative analysis of expert
opinions informed the development of practical plans. The findings revealed that students’
overall perception of programming skills was at a high level (x=3.93, S.D.=1.05), with basic
computer operation skills scoring the highest (x=4.00, S.D.=1.13) and basic programming
concepts scoring the lowest (x=3.88, S.D.=1.05). Key challenges included standardized file
management, understanding abstract concepts, balancing technical effects with project
themes, flowchart application, and collaborative documentation. Based on these results,
practical plans were developed covering five dimensions: basic computer operation skills,
basic programming concepts, graphical programming skills, logical thinking and problem-
solving ability, and project practical skills. This study provides practical references for
optimizing primary school programming education and enriches the theoretical system of
information technology education management. The developed practical plans offer
actionable strategies for teachers to address students’ specific needs and improve the quality
of programming teaching.

Keywords: Basic Programming Skills; Third-Grade Primary School Students; Academic
Administration Practical Plans; Programming Education

1. Introduction

The rapid development of information technology has elevated programming from a
specialized skill to a basic literacy in modern society. Globally, developed countries such as
the United States and the United Kingdom have long integrated programming education into
their basic education frameworks. They adopt diverse teaching methods, including project-
based learning and gamified learning, to foster students’ computational thinking and
innovative abilities. In China, the State Council’s “Development Plan for the New Generation
of Artificial Intelligence”(2017) explicitly requires the inclusion of artificial intelligence-
related courses and the gradual promotion of programming education in primary and
secondary schools. In recent years, various regions have launched pilot programs, which
indicates a vigorous development trend of programming education.

However, the implementation of programming education in Chinese primary schools is
still in the initial stage and faces multiple challenges. The programming curriculum system
lacks completeness and coherence, so it cannot meet students’ diverse needs. Teaching
methods remain single; traditional lecture-based teaching dominates this field. This teaching
method lacks interactivity and practicality, thus failing to stimulate students' learning
enthusiasm. High-quality teaching resources, such as textbooks, online courses and practical
platforms, are insufficient. This insufficiency restricts the improvement of teaching
effectiveness. In addition, primary school information technology teachers often have
deficiencies in programming teaching capabilities. For example, their professional knowledge
is outdated, and their practical guidance skills are inadequate. These deficiencies hinder the
improvement of programming education quality [,

Third-grade primary school students are in a critical period of cognitive development.
Their logical thinking abilities are improving rapidly, and they can understand complex
concepts. This stage is ideal for introducing programming education, because it helps
cultivate students' logical reasoning, problem-solving and innovative thinking skills. These
skills are transferable across disciplines and essential for their future career development .
However, third-grade students also face unique challenges in programming learning. They
have difficulty in grasping abstract concepts, weak awareness of logical structure and
insufficient practical application capabilities!?]. These challenges highlight the necessity of
formulating targeted practical plans to improve their basic programming skills. Against this
background, this study aims to investigate the opinions of third-grade students at Xincheng
Primary School in Lingui District on improving basic programming skills, and develop a
practical academic management plan tailored to enhance these skills for the target group.

This research has important theoretical and practical value. Theoretically, it enriches the
theoretical system of teachers' professional development in information technology education
by exploring the constituent elements and improvement paths of primary school students'
basic programming skills. It also promotes interdisciplinary integration by connecting
programming education with mathematics, science and art, and expands the application of
educational theories in specific subject areas. Practically, the developed practical plan
provides clear directions and operable methods for teachers at Xincheng Primary School. It
helps teachers identify the strengths and weaknesses of students' learning and implement
targeted teaching strategies. This not only improves teaching effectiveness and stimulates
students’ learning interest, but also provides a replicable reference for balancing the
development of programming education in small-scale primary schools. Furthermore, by
cultivating students’ programming skills and computational thinking, this research

7

contributes to nurturing the basic technological literacy of young people and lays a
foundation for the long-term development of China’s information technology and artificial
intelligence industries.

2. Research Methods

This study adopted a mixed-method research design, combining quantitative and
qualitative approaches to comprehensively investigate students’ programming learning status
and develop a scientific Practical Plan, with Xincheng Primary School in Lingui District,
Guilin City selected as a case study—the population included 340 third-grade students from
the school who possess certain learning abilities, thinking skills, and the potential to master
basic programming skills, and the sample size was determined using the Taro Yamane
formula (Yamane, 1973)1*) with a confidence level of 95% (e=0.05), resulting in 184 students
selected through stratified random sampling from 7 third-grade classes to ensure
representation across different classes. The research instrument was a self-developed
questionnaire consisting of two parts, namely general information (including gender, class,
programming learning duration, participation in extracurricular programming classes, and
available learning equipment) and opinions on programming skills improvement (covering
five dimensions—basic computer operation skills, basic programming concepts, graphical
programming skills, logical thinking and problem-solving ability, and project practical
skills—with a total of 25 items), which was validated by 3 experts using the Index of
Consistency (IOC) with each item's IOC value ranging from 0.67 to 1.00 (indicating good
content validity) and yielded a Cronbach’s Alpha coefficient of 0.895 (greater than 0.8,
demonstrating high internal consistency and reliability). For data collection, the researcher
obtained permission from the school principal in advance, explained the purpose and
confidentiality of the survey to the students who completed the questionnaire voluntarily via
online email, resulting in 184 valid questionnaires with an effective recovery rate of 100%,
while five experts in the fields of primary school information technology education,
programming teaching, and curriculum development were invited to participate in focus
group discussions focusing on analyzing students’programming learning challenges and
formulating the Practical Plan, with their opinions recorded and analyzed to revise and
improve the draft. For data analysis, the collected questionnaire data were organized and
analyzed using descriptive statistics including frequency, percentage, mean, and standard
deviation, with the five-point Likert scale (4.51-5.00 as highest, 3.51-4.50 as high, 2.51-3.50
as middle, 1.51-2.50 as low, and 1.00-1.50 as lowest) [* used to interpret the results, and the
data from expert focus group discussions were analyzed using content analysis to extract key
opinions and suggestions for validating and refining the Practical Plan, ensuring its
scientificity, feasibility, and applicability.

Table 1. Reliability Analysis of the Questionnaire

Scale Number of Items Cronbach's Alpha

Student Questionnaire 25 0.895

3. Research Results

3.1. General Information of Students

The general information of the 184 surveyed students is presented in Table 2. In terms of
gender distribution, males accounted for 55.43% (102 students) and females for 44.57% (82
students), showing a slight male predominance. Regarding class distribution, the sample

8

covered 7 third-grade classes, with Class 3(2), Class 3(3), and Class 3(7) each accounting for
15.22%, followed by Class 3(4) (14.67%), Class 3(1) and Class 3(5) (13.59% each), and
Class 3(6) (12.50%), indicating a relatively balanced distribution across classes.

In terms of programming learning duration, 34.78% (64 students) had studied
programming for 3-6 months, 24.46% (45 students) for 7-12 months, 16.85% (31 students)
for more than 1 year, 18.48% (34 students) for less than 3 months, and only 5.43% (10
students) had no programming learning experience. This indicates that approximately three-
quarters of the students had more than 3 months of programming learning experience,
possessing a certain foundation.

Regarding participation in extracurricular programming classes, 88.59% (163 students)
had participated in such classes, while 11.41% (21 students) had not, reflecting the popularity
of programming learning in extracurricular activities. In terms of available learning
equipment, 46.20% (85 students) had a computer or tablet at home, and 53.80% (99 students)
used a mobile phone as their sole learning device, with no students lacking dedicated learning
equipment.

Table 2. General Information of Students (n=184)

Category Subcategory Frequency Percentage (%)

Gender Male 102 55.43

Female 82 44.57

Class Class 3(1) 25 13.59

Class 3(2) 28 1522

Class 3(3) 28 15.22

Class 3(4) 27 14.67

Class 3(5) 25 13.59

Class 3(6) 23 12.50

Class 3(7) 28 15.22

Programming Never learned 10 5.43
Learning
Duration

Less than 3 months 34 18.48

3-6 months 64 34.78

7-12 months 45 24.46

More than 1 year 31 16.85

Participation in Yes 163 88.59

Extracurricular
Programming

Classes

No 21 11.41

Home Learning Computer/Tablet 85 46.20

Equipment
Only mobile phone 99 53.80
No dedicated equipment 0 0.00

3.2. Analysis of Primary School Information Third Grade Students in
Learning Programming Skills

The students’ opinions on programming skills learning across the five dimensions are
presented in Table 3. The overall mean score was 3.93 (S.D.=1.05), falling into the
“high”level, indicating that students generally held positive perceptions of their programming
learning status.

Among the five dimensions, basic computer operation skills scored the highest (x=4.00,
S.D.=1.13), followed by project practical skills (x=3.94, S.D.=1.11), logical thinking and
problem-solving ability (x=3.93, S.D.=1.07), graphical programming skills (x=3.90,
S.D.=1.02), and basic programming concepts (x=3.88, S.D.=1.05).

In the basic computer operation skills dimension, the highest-scoring items were
“independently turning on/off the computer and safely using the mouse and keyboard”
(x=4.07, S.D.=0.99), “connecting headphones to the computer and adjusting the volume”
(x=4.04, S.D.=1.09), and “saving Scratch projects with clear filenames” (x=3.96, S.D.=1.09),
indicating that students had a solid grasp of basic computer operations.

In the project practical skills dimension, the top three items were “presenting and
explaining design ideas to the whole class” (x=3.97, S.D.=1.07), “adding instructions to help
others use the program” (x=3.96, S.D.=1.12), and "listening to classmates’ ideas before
deciding in group work" (x=3.94, S.D.=1.06), reflecting students’ strong communication,
collaboration, and user awareness.

In the logical thinking and problem-solving ability dimension, the highest-scoring items
were “drawing simple flowcharts to plan programs” (x=4.04, S.D.=1.07), “breaking down big
problems into small steps to solve” (x=3.97, S.D.=1.10), and “designing simple tasks”
(x=3.89, S.D.=1.08), demonstrating students' good logical thinking and planning abilities.

In the graphical programming skills dimension, the top three items were “making a
character say something using the ‘say’ block” (x=3.98, S.D.=1.02), “adding a new
background from the library” (x=3.91, S.D.=1.04), and “adjusting the shape, size, and color
of the character” (x=3.90, S.D.=1.04), indicating students’ proficiency in using Scratch for
interactive and creative operations.

In the basic programming concepts dimension, the highest-scoring items were
“understanding the role of ‘instructions’ (x=3.93, S.D.=1.00), “understanding the meaning
of ‘conditional judgment’(x=3.89, S.D.=1.05), and “knowing how to use the ‘stop’ block to
end a program” (x=3.89, S.D.=1.03), showing that students had a basic grasp of core
programming concepts, though there was room for improvement in understanding abstract
concepts.

Table 3. Students’ Opinions on Programming Skills Learning (n=184)

Questions n=184 Level of Opinions
4 S.D.
Basic computer operation skills
1. You can turn on and off the computer independently and use the 4.07 0.99 High
mouse and keyboard safely.
2. You can create folders to save programming works and find files 4.01 0.99 High
quickly.
Table 4.2 Opinion of primary school information third grade students in learning programming skills (Cont.)
Questions n=184 Level of Opinions
S.D.
3. You can skillfully open the Scratch software and use the "green flag" 3.92 1.04 High
to run the program.
4. You can connect headphones to the computer and adjust the volume. 4.04 1.09 High
5. You know how to save my Scratch project with a clear filename 3.96 1.09 High
(e.g., "My Game").
Total 4.00 1.13 High
The basic concepts of programming
6. You understand the role of "instructions" (for example: let the 393 1.00 High
character move 10 steps).
7. You know that "loops" can make the code repeat (for example: let the 3.85 1.10 High

10

character turn 5 times).

8. You understand the meaning of "conditional judgement" (for 3.89 1.05 High
example: if it hits the edge, it will bounce back).
9. You understand that changing numbers in commands affects results 3.85 1.06 High
(e.g., changing "move 10 steps" to "move 20 steps").
10. You know how to use the "stop" block to end a program. 3.89 1.03 High
Total 3.88 1.05 High

Table 4.2 Opinion of primary school information third grade students in learning programming skills (Cont.)

Questions n=184 Level of Opinions
S.D.

Graphical programming skills

11. You can use Scratch building blocks to combine simple animations 3.84 1.09 High
(such as character walking).

12. You can adjust the shape, size and color of the character. 3.90 1.04 High

13. You can add background music or sound effects to the program. 3.89 1.11 High

14. You can make a character say something by using the "say" block. 3.98 1.02 High

15. You can add a new background to my project from the library. 391 1.04 High

Total 3.90 1.02 High

Logical thinking and problem-solving ability

16. When you encounter problems in programming, you will break 3.97 1.10 High
down big problems into small steps to solve them.

17. When the program fails, you will check whether the order of the 3.87 0.99 High
building blocks is reasonable.

18. You can design a simple task (such as letting the character avoid 3.89 1.08 High
obstacles and reach the end).

19. You can draw a simple flowchart to plan my program (e.g., "start — 4.04 1.07 High

move — jump — end").
Table 4.2 Opinion of primary school information third grade students in learning programming skills (Cont.)

Questions n=184 Level of Opinions
S.D.
Total 3.93 1.07 High
20. When a character moves incorrectly, you try different blocks to fix 3.89 1.08 High
1t.
Project practical skills
21. You can complete a programming work independently (such as a 3.92 1.01 High
self-introduction animation).
22. When working in a group, you can divide the work with my 3.92 1.02 High
classmates to complete the task.
23. After completing the work, you can show and explain the design 3.97 1.07 High
ideas to the whole class.
24. You can add instructions to help others use my program (e.g., "Press 3.96 1.12 High
space to start").
25.When working in a group, you listen to classmates' ideas before 3.94 1.06 High
deciding.
Total 3.94 1.11 High
Total 3.93 1.05 High

3.3. Practical Plan for Improving the Basic Programming Skills of Third-
Grade Primary School Students at Xincheng Primary School in Lingui
District

Based on the questionnaire results and expert focus group discussions, Practical plans
for improving third-grade students’ basic programming skills were developed, covering five
core dimensions with specific strategies (Table 4).

Table 4. Implementation Strategies

Core Skill Dimensions Specific Implementation Strategies

Basic Computer Operation 1. Prioritize standardized file saving habits in the early stages of programming instruction, promoting the
Skills naming convention of "Name + Date + Project Name" through demonstrations and repeated practice.
2. Enhance student engagement through gamified activities such as "naming challenges" and "file scavenger
hunts" to reinforce standardized file management.
3. Optimize the storage interface design of the teaching platform to make save paths and file naming more
intuitive and user-friendly for younger students.

11

4. Incorporate a "save confirmation + naming review" process after each programming task to help students
internalize the complete operation chain of "finish the work - save it - find it".

Basic Programming 1. Adopt a "visualization + comparative experiment" approach to teach abstract concepts such as parameter

Concepts modification, guiding students to establish logical connections between parameters and results.
2. Encourage students to experiment with different parameter values and observe changes, fostering a trial-
and-error mindset and parameter sensitivity.
3. Use real-life analogies (e.g., comparing parameters to seasoning a dish) and interactive tools (e.g., sliders
on interactive whiteboards) to visualize abstract concepts.
4. Design contextualized exercises for loops and conditional judgments to strengthen students' application
capabilities in diverse scenarios.
Graphical Programming 1. Adhere to the teaching principle of "theme first, material selection later", guiding students to clarify
Skills creative themes through storyboards or verbal descriptions before selecting materials.
2. Set appropriate restrictions on the number of characters, backgrounds, or special effects in tasks to avoid
overemphasis on technical operations and neglect of project themes.
3. Implement a three-step creative process: "sketch conception - material planning - project construction" to
help students organize their ideas and focus on content expression.
4.Emphasize creative integrity in project presentations and evaluations, guiding students to understand that
technology serves expression.
Logical Thinking and 1. Design hierarchical task sequences aligned with students' cognitive levels, starting from familiar daily
Problem-Solving Ability scenarios (e.g., breaking down the "toothbrushing process") and gradually transitioning to complex

programming tasks.
2. Cultivate step decomposition skills through "level-breaking task cards" and role-playing activities (e.g.,
"robot instruction games").
3. Simplify flowchart symbols and use "life task diagrams" (e.g., morning getting up process) to lower the
understanding threshold, and display Scratch building blocks and flowchart structures in parallel to establish
cognitive connections.
4. Introduce systematic debugging training, focusing on logical flow checks and error identification.

Project Practical Skills 1. Clarify role division in collaborative projects, assigning roles such as "programmer", "designer", and
"recorder" to reinforce documentation responsibilities.
2. Provide structured document templates (e.g., "What I did - Why I did it") and allow a combination of oral
explanations, audio transcriptions, and graphic materials to lower the writing barrier.
3. Establish peer review mechanisms (e.g., "manual scorecards") to encourage students to examine document
clarity, completeness, and reproducibility.
4. Organize regular project sharing sessions to provide students with opportunities to present their works and
explain design ideas, improving their expression and communication skills.

4. Discussion

4.1. Opinion of Primary School Information Third Grade Students in
Learning Programming Skills

The study found that third-grade students at Xincheng Primary School have an overall
high perception of their programming skills (x=3.93, S.D.=1.05). This result reflects the
students' positive learning attitudes and good learning outcomes. It is consistent with the
findings of Saez-Lopez et al.l), who noted that primary school students can effectively master
basic programming skills through appropriate teaching methods.

The participation rate in extracurricular programming classes reaches 88.59%. This high
rate indicates that students have strong extrinsic motivation and intrinsic acceptance of
programming learning, and these factors may contribute to their positive self-perceptions of
programming skills.

Among the five assessment dimensions, basic computer operation skills obtained the
highest score (X =4.00, S.D.=1.13). This result aligns with Nagyova’s [6l view that basic
computer operations are core prerequisites for information literacy and programming learning.
Students’ proficiency in power-on/off procedures, input device usage, and file management
provides a solid foundation for their subsequent programming activities. This proficiency also
demonstrates the effectiveness of daily computer basics instruction.

Project practical skills ranked second (X =3.94, S.D.=1.11). This score indicates that
students can effectively apply programming knowledge to real-world scenarios. Their strong
performance in presenting design ideas, adding user instructions, and collaborating in groups
reflects the value of project-based learning in programming education. This finding is

12

consistent with Resnick et al.’s [7) research, which showed that Scratch-based project practice
fosters students’ creative expression and collaborative skills. It also suggests that current
programming instruction has achieved good results in cultivating students’ practical
application capabilities.

Logical thinking and problem-solving ability scored 3.93 (S.D.=1.07). Students
demonstrated good planning skills (e.g., using flowcharts) and problem decomposition
abilities. This result supports Eriimit’s ¥ conclusion that programming education effectively
promotes students' logical thinking and problem-solving skills. However, students performed
relatively weakly in mastering abstract logical structures (e.g., standardized flowchart
symbols). This weakness indicates a mismatch between the abstraction of symbolic language
and students’ cognitive development level, which is a common challenge for primary school
students B,

Graphical programming skills scored 3.90 (S.D.=1.02). Students are proficient in using
Scratch for interactive and creative operations, such as designing character dialogues and
modifying backgrounds. This observation is consistent with Sapounidis et al.’s ! finding that
graphical programming tools like Scratch are user-friendly for beginners, as they lower the
entry barrier to programming. However, experts noted that students tend to focus on visual
effects and neglect project themes. This phenomenon is similar to Simon et al.’s research
result that students often become overly entangled in technical details when using graphical
programming tools.

Basic programming concepts scored the lowest (x=3.88, S.D.=1.05) among the five
dimensions. This score indicates that students face challenges in understanding abstract
concepts such as parameters and logical structures. This result is consistent with the cognitive
characteristics of young students, who prioritize practical application over theoretical
internalization 1'%, Students' weak understanding of parameter modifications and conditional
statements may hinder their ability to implement complex interactive logic. This highlights
the need for optimized teaching strategies in this area.

The study also identified key challenges faced by students: insufficient standardized file
management habits, difficulty in grasping abstract programming concepts, overemphasis on
technical effects at the expense of project themes, weakness in the flexible application of
flowcharts, and inadequate documentation skills in collaborative projects. These challenges
are consistent with the findings of previous studies, and they emphasize the need for targeted
interventions to address students' specific learning needs.

4.2. Practical plan for Improving the Basic Programming Skills of Third-
Grade Primary School Students at Xincheng Primary School in Lingui
District

The developed practical plans integrate students’ learning needs with expert opinions
and cover five core dimensions of basic programming skills. These plans conform to relevant
educational theories and research findings, thus demonstrating scientificity and feasibility.

Regarding basic computer operation skills, the practical plans emphasize standardized
file management and interface optimization. This emphasis aligns with Sagkes et al.’s view
that sufficient practice and user-friendly tools can improve students’ computer operation
skills. Meanwhile, the gamified activities proposed in the plans can enhance student
engagement and reinforce good learning habits. This design is supported by Prykhodchenko
et al.’s finding that gamification effectively promotes programming learning.

For basic programming concepts, the plans adopt a “visualization + comparative
experiment” approach, which addresses the difficulty in teaching abstract programming
concepts. This approach is consistent with Sadez-Lopez et al.’s recommendation that

13

educators should use visualization tools and real-life analogies in programming instruction.
Additionally, the plans emphasize trial-and-error practice and contextualized application.
This emphasis helps students establish logical connections between programming concepts
and practical applications, thereby fostering deep understanding instead of mechanical
memorization.

In terms of graphical programming skills, the practical plans advocate a “theme first,
material selection later” principle, which solves the problem that students often neglect
project themes during learning. This principle aligns with Kauc¢i¢ and Asi¢'s view that
Scratch should be used to foster students’ creativity and content expression rather than
merely focus on technical operations. Moreover, the plans propose a three-step creative
process, which provides students with a structured framework to organize their ideas and
improves the coherence and integrity of their programming projects.

Regarding logical thinking and problem-solving abilities, the plans adopt hierarchical
task design and simplified flowcharts. This design is consistent with Shin and Park's ['!]
finding that tiered tasks can effectively improve students’ problem-solving abilities.
Furthermore, the plans use life task diagrams and role-playing activities, which reduce
students' cognitive load and make abstract logical structures more understandable. This
practice aligns with Milkova and Hulkova’s 2 emphasis on developing algorithmic thinking
through practical activities.

For project practical skills, the plans implement role division and structured templates,
which address the weakness of students’ documentation skills. This design is supported by
Hiltunen's ['3 view that programming learning should emphasize social interaction and
collaboration. Additionally, the peer review mechanism and project sharing sessions in the
plans enhance students’ communication and expression skills, and foster their sense of
responsibility and user awareness.

Overall, the practical plans are tailored to the cognitive characteristics and learning
needs of third-grade students, integrating theoretical insights and practical experience. They
provide teachers with a systematic and actionable framework to improve the quality of
programming teaching and address the key challenges identified in the study. Meanwhile, the
plans emphasize the balance between technical skill training and creative expression, which
aligns with the goal of cultivating comprehensive and innovative talents in modern education.

5. Recommendations for Further Study

5.1. Recommendations Based on Research Findings

In terms of the cultivation of students’ basic computer operation skills, schools should
develop a “Third Grade Programming Operation Manual” that contains illustrated
instructions on file saving, naming conventions, and common hardware operations.
Meanwhile, schools ought to organize quarterly “Operational Skills Competitions”, such as
competitions for file search speed and standardized naming, to reinforce students’ good
operation habits through gamification. Additionally, teachers should optimize the school's
programming teaching platform by setting default naming templates and adding a one-click
save function.

In the teaching of basic programming concepts, educators should compile a “Collection
of Real-Life Programming Concept Case Studies” to help students understand abstract
programming concepts through familiar daily scenarios. Teachers need to design a
“Parameter Exploration Worksheet” for students to record their observations of the changes
in different parameter values. In classroom teaching, teachers should use interactive
whiteboards and slider tools to visualize the changes of parameters in real time.

14

Regarding the improvement of students’ graphical programming skills, teachers should
implement the “Three-Step Creative Process” (including concept sketching, material planning,
and project development) with the help of paper templates. Schools should set up “themed
project tasks”, such as “Environmental Protection Animation”, to guide students to focus on
the presentation of project content. Besides, schools ought to establish a themed “material
resource library” to facilitate students’ efficient search for relevant materials.

In the process of cultivating students' logical thinking and problem-solving abilities,
teachers should design step-by-step task cards, such as “Level 1: Imitate Steps”, “Level 2:
Complete Steps”, and “Level 3: Independently Design Steps”, to meet the learning needs of
students with different ability levels. Educators should create “life process flowcharts” as
introductory materials for students to learn programming flowcharts. Before students carry
out digital programming operations, teachers can use physical building blocks to help them
simulate Scratch logic.

In terms of the cultivation of students' project practical skills, schools should create
“Collaborative Project Role Cards” to clarify the responsibilities of each student in
collaborative projects. Teachers need to develop “Project Document Templates” with fill-in-
the-blank instructions to reduce the difficulty for students to complete project documents.
Moreover, schools should organize regular “project sharing sessions” to improve students’
expression skills and enhance their learning confidence.

5.2. Recommendations for Further Study

This study has several limitations, and these limitations provide clear directions for
future research. First, the sample of this study was limited to 184 third-grade students from a
single primary school, and this sampling limitation may affect the generalizability of the
research findings. Therefore, future research should expand the sample size, include multiple
primary schools in both urban and rural areas, explore regional differences in programming
education, and verify the applicability of the proposed practical plans.

Second, this study primarily focused on students’ perspectives and failed to fully
investigate the impact of teacher-related factors, including teachers' programming teaching
capabilities and training requirements. Future research could explore the relationship between
teacher-related factors and students’ programming skill development, and further develop
corresponding support strategies for teachers.

Third, the long-term effectiveness of the developed practical plans in programming
education remains to be verified. Future research could conduct long-term follow-up studies
to observe changes in students' programming skills over an extended period, evaluate the
sustainability of the practical plans, and make necessary revisions to these plans based on
their practical application effects.

Fourth, although this study adopted a mixed-method research design, it did not deeply
explore the causal relationships among the key variables involved. Future research could
employ more advanced statistical methods, such as structural equation modeling, to analyze
the causal relationships between teaching strategies, students' learning behaviors, and their
programming skill development outcomes.

Finally, with the continuous advancement of educational technology, new programming
tools and teaching methods (e.g., artificial intelligence-assisted teaching) are constantly
emerging. Future research could explore the application of these new technological tools and
methods in primary school programming education, and update the existing practical plans
accordingly to keep up with the trends of educational innovation.

15

References

[1] Kalelioglu, F., & Giilbahar, Y. (2014). The effects of teaching programming via Scratch
on problem solving skills: A discussion from learners’ perspective. Informatics in
Education, 13(1), 33-50.

[2] Tsarava, Z., Jongsma, K. R., & van der Maas, H. L. (2022). The development of
computational thinking in primary school: A cross-sectional study. Journal of
Educational Psychology, 114(3), 104425.

[3] Yamane, T. (1973). Statistics: An introductory analysis (3rd ed.). Harper and Row.

[4] Wongwanich, S. (2005). Basic research methodology. Bangkok: Chulalongkorn
University Press.

[5] Séez-Lopez, J. M., Marcos Roman-Gonzalez, & Esteban Vazquez-Cano. (2016). Visual
programming languages integrated across the curriculum in elementary school: A two
year case study using "Scratch" in five schools. Computers & Education, 97, 129-141.

[6] Nagyova, 1. (2016). Constructivism in teaching of basic computer skills. Procedia - Social
and Behavioral Sciences, 234, 120-125.

[7] Resnick, M., Maloney, J., Monroy-Herndndez, A., et al. (2009). Scratch: Programming
for all. Communications of the ACM, 52(11), 60-67.

rumit, E. . e effect of scratch programming on the problem-solving skills o
8] Erumit, E. (2020). The effi f h g ing h bl lving skills of
primary school students. Education and Information Technologies, 25(2), 1013-1037.

[9] Sapounidis, T., Demetriadis, S., & Stamelos, 1. (2019). Evaluating the usability of scratch
for teaching programming to primary school students. Education and Information
Technologies, 24(1), 67-78.

[10] Hijén-Neira, R., Gémez-Sanchez, E., & Garcia-Pefalvo, F. J. (2020). Metaphors and
visualization tools to teach programming concepts to primary school students.
Computers & Education, 155, 217800-217815.

[11] Shin, S., & Park, P. (2014). A study on the effect affecting problem solving ability of
primary students through the scratch programming. Advanced Science and Technology
Letters, 59(1), 117-120.

[12] Milkova, E., & Hulkova, A. (2013). Algorithmic and logical thinking development: Base
of programming skills. WSEAS Transactions on Computers, 12(2), 41-51.

[13] Hiltunen, M. (2016). Social constructivist approaches to teaching programming in
primary school (Master’s thesis). University of Jyvaskyla.

16

