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Abstract

Many mainstream machine learning approaches, such as neural networks, are not well
suited to work with imbalanced data. Yet, this problem is frequently present in many
real-world data sets. Collection methods are imperfect, and often not able to capture
enough data in a specific range of the target variable. Furthermore, in certain tasks data
is inherently imbalanced with many more normal events than edge cases. This problem
is well studied within the classification context. However, only several methods have been
proposed to deal with regression tasks. In addition, the proposed methods often do not
yield good performance with high-dimensional data, while imbalanced high-dimensional
regression has scarcely been explored. In this paper we present a selective under-sampling
(SUS) algorithm for dealing with imbalanced regression and its iterative version SUSiter.
We assessed this method on 15 regression data sets from different imbalanced domains,
5 synthetic high-dimensional imbalanced data sets and 2 more complex imbalanced age
estimation image data sets. Our results suggest that SUS and SUSiter typically outperform
other state-of-the-art techniques like SMOGN;, or random under-sampling, when used with
neural networks as learners.

1. Introduction

The increasing availability of large data sets over the last few years enables researchers
to use machine learning methods for building practical predictive models. However, such
data availability comes at the cost of less-than-perfect data with imbalanced or skewed
distributions. In regression tasks uniform target distributions normally improve the per-
formance of different machine learning algorithms like neural networks (Ferndndez et al.,
2018). Nevertheless, real-world data sets often contain target values in certain ranges oc-
curring significantly less frequently than in other dominant ranges. Consequently, models
tend to perform better on rich information target regions than on scarce regions (Fernandez
et al., 2018). However, the latter are frequently more significant for building predictive
models than other densely populated regions.

This problem has been widely studied within a classification context, but very rarely in
a regression context. Existing approaches for classification tasks can be divided into two
main groups: resampling techniques, and cost-sensitive learning approaches (Krawczyk,
2016). Adapting these techniques to regression problems is problematic due to fundamen-



tal differences between nominal and continuous target values. Ribeiro (2011) proposed a
relevance function that splits the data set into rare and major classes, which enables us-
ing some of the existing imbalanced classification methods in regression problems. Only a
few methods have been proposed to deal with regression problems with imbalanced data
sets. These include SMOGN (Branco et al., 2017) which is the state-of-the-art algorithm
for dealing with imbalanced regression. It is an improvement over SMOTER (Torgo et al.,
2013) and combines it with oversampling via Gaussian noise. Random oversampling is an-
other common technique used for imbalanced regression, but can lead to over-fitting (He &
Garcia, 2009). Random under-sampling is another available approach but we consider it a
blind loss of potentially useful information. Some samples are more valuable than others for
learning algorithm’s ability to predict target values accurately. In the classification setting,
these could be samples close to the class edges. In a regression setting, these could be sam-
ples in feature space regions where small differences can cause large changes of the target
value. Nevertheless, random under-sampling has shown better performance within high-
dimensional imbalanced classification data setting (Blagus & Lusa, 2013), while SMOTE
(Chawla et al., 2002) has been shown to introduce bias and perform poorly in this specific
setting (Blagus & Lusa, 2013).

Therefore, in this paper we propose a new method to address the problem of imbalanced
regression. This method, which we named SUS, utilizes a selective under-sampling strategy
to extract the most representative samples from the data set. Inspired by information gain
theory (Mitchell, 1997) we investigate both feature and target spaces in order to optimize
the selection of samples that are the most significant information carriers. In addition,
we propose a variant of the proposed method called SUSiter which is especially suited for
iterative algorithms like neural networks. SUSiter exploits all available data in a training
process while using only a selected subset of samples in each iteration. SUSiter exploits the
advantages of using a balanced data set for building the regression model while enabling
the use of a different subset of data samples in each learning iteration. This reduces the
loss of available data samples to a minimum.

This paper is organized as follows: Section 2 defines the problem of imbalanced regression
and presents an overview of the existing related work. The proposed SUS and SUSiter
algorithms are described in Section 3, while the results of the experimental evaluation are
presented in Section 4. We provide a discussion on the obtained results in Section 5. Finally,
Section 6 outlines the main conclusions and future work.

2. Related Work

Imbalanced regression problems are a subset of regression problems with a non-uniform
distribution of the target range where certain target ranges are significantly less represented
than others. The goal is to obtain a model that approximates a function Y = f(x). A
training set D = {(z;,:)}, with N samples is used. This problem is significantly more
complex than imbalanced classification since the target variable has a potentially infinite
number of values compared to the limited number of classes in classification problems.
Most of the existing approaches for imbalanced regression build on top of the Torgo
and Ribeiro (2007) and Ribeiro’s (2011) proposal of a relevance function. The relevance
function ¢(y) assigns a quantitative relevance score to the range of target values, where 1
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corresponds to the maximal relevance and 0 to the minimum relevance. Nevertheless, the
quantification of the relevance is domain-specific and ideally should be performed by domain
experts which are not always available. To address this issue, Ribeiro (2011) proposed an
automated method for approximating the relevance function ¢(y). The latter is estimated
from the target variable distribution through box plot statistics. The method assumes
that the rare and most extreme cases are the most relevant. The relevance function is
then used to classify data samples into major (normal) and minor (rare) using a user-
provided threshold ¢r. Given this threshold, the data set is split into a set of rare samples
RS, and a set of normal samples, NS as follows: RS = {(z,y) € D : ¢(y) > tr} and
NS ={(z,y) € D: ¢(y) < tr}.

In general, approaches dealing with imbalanced data set are divided into resampling

methods and/or cost-sensitive learning methods (Krawczyk, 2016). Resampling methods
modify the data sets directly and most frequently act before the learning algorithms. These
modifications include over-sampling and /or under-sampling of a data set with the intention
to balance the distribution. On the other hand, cost-sensitive methods modify existing
learning algorithms to better handle non-uniform data distribution.
There are different approaches to address data imbalance for classification problems. Re-
sampling methods for classification often create new samples for rare classes (over-sampling)
and/or remove samples from common classes (under-sampling). SMOTE (Chawla et al.,
2002) is regarded as the state-of-the-art resampling algorithm for classification. Kernel
density estimator is used to estimate the feature distribution of minority classes (Kamalov,
2020). New minority class samples are generated using the estimated feature distribution.
In cost-sensitive methods the loss of samples with rare classes is emphasized in the overall
loss (Cui et al., 2019).

Unlike classification, regression is not so frequently studied in the context of imbalanced
settings. Nevertheless, the development of methods that address imbalanced regression is
crucial for real-world applications. These include, for instance, the statistical downscaling
of precipitation described by Vandal et al (2017) and improved by methods proposed by
Steininger et al (2021). There also exist a few different sampling approaches for imbalanced
regression, which are applied during data pre-processing, such as SMOTER (Torgo et al.,
2013). The latter is based on the original SMOTE method for classification (Chawla et al.,
2002) and combines under-sampling of common data samples with over-sampling of rare
cases, in order to create a more balanced distribution. The authors adapted SMOTE for
use in regression domains by binning data samples into rare and normal partitions using the
above-mentioned relevance threshold ¢r and relevance function ¢(y). Data samples marked
as relevant RS are over-sampled, thus creating new synthetic cases via interpolation of fea-
tures and target values between two relevant data samples. On the other hand, non-relevant
data NS samples are under-sampled. The SMOGN (Branco et al., 2017) algorithm builds
on top of SMOTER and combines it with oversampling via Gaussian noise. Normally dis-
tributed noise is added to the features and the target value of rare data samples, therefore
creating additional, slightly altered replicas of existing samples (Branco et al., 2016). Rare
data samples are identified using the same method, i.e. relevance function, as SMOTER.
SMOGN iterates over all rare samples and chooses between SMOTER’s interpolation-based
oversampling and Gaussian noise-based oversampling depending on the distance to the k-
nearest neighbors. For small distances, SMOTER’s interpolation is applied, since interpo-
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lation is deemed more reliable for close samples. Other rare data samples are over-sampled
with Gaussian noise, while common data samples are randomly under-sampled. The authors
report improvements compared to SmoteR (Torgo et al., 2013). Given the unavailability of
other methods addressing the same problem, SMOGN can be considered the state-of-the-art
among resampling techniques.

Not many cost-sensitive approaches for imbalanced regression exist. DenseLoss (Steininger
et al., 2021) is an example of such method, and it is based on a density-based weighting
scheme DenseWeight also presented in the same manuscript. Unlike previous work on
weighting data samples based on the target value distribution, DenseWeight does not make
any assumptions about which cases are rare since it determines relative rarity with a density
function. Conversly to SMOTER (Torgo et al., 2013) and SMOGN (Branco et al., 2017),
DenseLoss (Steininger et al., 2021) does not explicitly change the data set, by creating new
samples or removing the existing ones.

3. Methods

In this section we introduce SUS, our proposed selective under-sampling approach for im-
balanced data in regression tasks. In addition, we present and explain SUSiter, a variant
of the SUS method especially tailored for iterative learning algorithms. SUSiter exploits
all available data in an iterative fashion, while only using a selected subset of data in each
iteration.

3.1 Selective Under-Sampling SUS

This algorithm is applied to data as a pre-processing step for tackling imbalanced domains
and acts before the learning process stage. First, data is split into rare RS and normal
samples N.S. Random under-sampling approaches remove samples from a data set without
assessment of the importance of each specific sample. We believe this is not a suitable
method to perform under-sampling as some samples contribute more than others to the
learning algorithm’s ability to correctly estimate the function f(x). SUS performs selective
under-sampling of NS by removing some of the less valuable samples while keeping those
that carry the most relevant information. SUS preserves all data samples from RS. This
leads to a more balanced data set.

The main idea of SUS is to find and extract the subset of N.S data samples that better
characterizes both feature and target space. Figure 1 shows how SUS chooses samples in
a toy two dimensional feature data set (upper part of the Figure 1). Red squares and blue
stars represent samples that are chosen by the SUS algorithm. Red (square) samples would
be selected by SUS since they are isolated in the corresponding region of the feature space.
On the other hand, blue (stars) samples would be selected by SUS as clusters representatives
in the feature space. The green (circled) cluster aggregates samples that present not only
close feature space values, but also close target values (bottom part of the Figure 1). In
addition, one of the samples belonging to the same cluster presents a target value which is
significantly deviated. Note that this is just an example and further samples with divergent
target values could also belong to the same cluster. In this scenario, SUS would choose a
single sample as representative of the cluster samples, as well as all the cluster samples with
skewed target values. Note also that the largest cluster in Figure 1 has more representatives
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than the other clusters. Larger clusters (this is defined by further explained user thresholds)
are processed in the algorithm as multiple smaller clusters. This ensures that in case large
proportion of data samples is allocated in a large cluster SUS does not select only one
sample as the cluster’s representation.

= ook - * *
eo® ® ke'% *o oW

- ok - °e 1 ° - * . *

n
* . *
| [ = ] u
*
*O % * Sus
col®
( J J
m e *o
n
. s
[ N *

_ —y pore RU
Figure 1: Toy example of two-dimensional Figure 2: Toy example of two-dimensional
feature space representing a selection of feature space representing a selection of
samples (red-squares and blue-stars). SUS samples (red-squares, blue-stars and dark-
selection and target value spread of the grey-circles).  SUS vs random under-
green cluster samples. sampling (RU).

To summarize, SUS firstly chooses every isolated sample from the feature space. We
believe that such samples carry important information about the feature space representa-
tion which, if removed, would be lost. Therefore, the first step in our selection is based on
the feature representation space: SUS selects samples without close neighbors. The second
step is targeted at identifying dense sample clusters and their representatives. Finally, the
third step is aimed at processing the discovered clusters contemplating that we are dealing
with a regression problem instead of a classification one. In this regard, we need to consider
not only the feature space, but also the target space. The clusters obtained in the previous
stage are the best source for less-harmful removal of samples. Most of the cluster samples
often can be discarded since the information they carry at feature level is already provided
by the cluster representative. However, as stated earlier, SUS also considers the information
that each sample carries at target level to decide whether to discard it or not. To assess the
relevance of the target-level information carried by the samples belonging to the cluster, we
determine how spread are the target values belonging to these samples. In case target values
are widely spread across the target range, there is a potential for information loss with the
removal of some of the samples from the cluster. In this case, SUS chooses the sample with
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the most-distant target value from the cluster’s average and assesses the spread again. The
idea is that the sample presenting the most distant target value is significantly different
than others in the cluster. This process is iterated until a predefined spread threshold is
reached.

Figure 2 shows an example of the difference between randomly under-sampled data and
SUS selection with the same number of selected (highlighted by brighter colors/different
shapes) samples. It can be noted that random under-sampling removes some of the relevant
samples in the feature space, unlike SUS.

The SUS algorithm requires D: data set with continuous target variable y, tr: threshold
for the relevance function (Ribeiro, 2011) for separation of D into RS and N S, k: number of
neighbors in knn model, blob,.: a threshold to decide which neighbors are considered close
and which neighbours form part of the cluster, and spready.: a threshold for the dispersion
of target values in clusters. Note that bloby,. is not an absolute value in distance metrics,
under which a neighbor is considered close. This would be difficult to provide without any
prior knowledge of the data set and relations between samples in a data set. Therefore, we
propose an automated method for determining this distance for every data set. bloby, is a
percentile of the average distance to k neighbors, for the samples in NS. In Algorithm 1
we show how to compute blob - a corresponding distance which is an actual threshold for
the closeness of neighbors. spread, is a dispersion threshold used in cluster processing for
terminating the selection of cluster representatives. Once the dispersion of the target values
is below spready, the algorithm selects only the sample that has the target value the closest
to the cluster’s average.

The details of the SUS method are provided in Algorithm 1.

The SUS algorithm returns a reduced data set - with fewer samples than the original -
and a more balanced target distribution. The returned data set contains all samples marked
as rare RS in the original data set and the selected subset of N.S values marked as normal
in the original data set.

In Section 4 we provide further analysis of the hyper-parameters the in SUS algorithm.

3.2 SUS with Iterative Replacement - SUSiter

The algorithm is an adaptation of the previously proposed SUS which is especially tailored
for iterative learning methods. Even though the SUS algorithm strives for the least impactful
data loss, we still lose some information carried by the removed samples. With SUSiter
method, we introduce a variant that allows for the use of all available data while retaining
the under-sampling advantages. With this modification, SUSiter introduces a moderated
amount of noise in the learning process which can help with the prevention of over-fitting
(Goodfellow et al., 2016).

The main idea of SUSiter adaptation is an exploitation of available data samples. The
process is roughly the same as the one previously described with SUS. The most important
distinction is that SUSiter acts both before and during the learning process stage. The
initial pre-processing before the learning process stage is the same as in the SUS. However,
during the learning process, in each iteration data selected from feature space clusters is
randomly replaced. This leads to a subset of data that is different in every iteration -
thereby introducing the noise in the learning process - while keeping the central idea of
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Algorithm 1 SUS

Require: D - data set with target continuous variable y

tr - threshold for relevance on y values
k - number of neighbours in knn model

bloby, - percentile threshold for the close neighbors distance > Default value 75%

spready, - threshold for the cluster target values dispersion

procedure SUS(D)
Split D into NS and RS
Construct knn(k, N.S) model

for s € NS do
kn « {(si,d;) : s; € NS, min(d;)}¥
d Zlf d;
S % k
s.visited < False
end for

darray <~ [dsl’d52---d5N]’ ds(z) < ds(z'—H)
blob < bloby,-th percentile of dyyray
for s € NS do
if s.visited == False then
kn < {(si,d;) : s; € NS, min(d;)}¥
if V (s4,d;) € kn, d; > blob then
select s, s.grade < 11
for s; € kn do
s;.visited < True
end for
else
cn < {s; € kn : d; < blob}¢
Yen < {yi}§ target values V s; € cn

— 21U
Yen < ¢

vary « Zf(yz-;yzn)z
spread < U;giy
while spread > spread;, do
select s, {s € ecn : max(ys — Yen) }
en <« {s; € kn, s; # s : d; < blob}
oy

Yen < el
vary (i —yen)? ‘%;Tymy
spread <— va_iy

end while

select s, {s € en : min(ys — Yen)}

s.grade + 1

V s; € cn, s;.visited + True

end if
end if
end for

end procedure

> Default value 0.5

> (Ribeiro, 2011)
> (Cover & Hart, 1967)

> Method for close neighbors threshold

> k neighbors from knn model

> Average distance to k neighbors

> Initialization

> Sorted array of average distances to kn
> blob threshold for close neighbours

> Under-sampling procedure
> Visit every sample once

> kn set of k closest neighbors
> No close neighbours

> Isolated sample, Grade II the highest level

> Cluster with close neighbors

> Determine close neighbors set cn

> Target values for cn

> Average of target values

> Variance for target values
> Spread in target space

> s corresponding y for sample s
> Update cn, remove s

> The closest sample to yen
> Grade I, middle importance
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SUS which is to have the best representation of both the feature and target spaces and a
more balanced distribution of target values. It is important that the number of selected
samples is the same in each iteration, and the same as in SUS, with some of the cluster
representatives being randomly replaced with their close neighbors.

Algorithm 2 SUSiter

Require: D - data set with target continuous variable y
tr - threshold for relevance on y values
k - number of neighbours in knn model
bloby, - percentile threshold for the close neighbors distance > Default value 75%
spready, - threshold for the cluster target values dispersion > Default value 0.5

procedure SUSITER(D)

Perform SUS Algorithm 1 > As a pre-processing step
for i in iterations do > ¢ depends on the learning algorithm
for s € NS do > Under-sampling procedure
if s.grade == II then > grades importance of a sample
select s
else
if s.grade == 1 then > Sample s has close neighbours
en < {s; € NS : d; < blob}¢ > close neighbors set cn
select random s; € cn > Select random close neighbour
end if
end if
end for
Perform learning algorithm iteration > In NNs one epoch
end for

end procedure

3.3 Information Theory Analysis

Information theory is grounded in the fundamental idea that discovering an improbable
event imparts more information than discovering a probable one (Goodfellow et al., 2016).
In simpler terms, if an event is likely or certain, it carries less information, even to the point
of having none in the case of events guaranteed to happen. Conversely, events with lower
likelihood possess higher information content. (Goodfellow et al., 2016).

Translating this analogy to the problem of imbalanced regression, envisioning the n-
dimensional feature space through the lens of a sample probability distribution (illustrated
in Figure 3) reveals that regions corresponding to clustered areas possess a higher likelihood
of occurrence, while the sparser spaces between clusters exhibit a lower probability. If
we identify a subset of data samples with SUS (blue stars and red squares in Figure 3),
incorporating the remaining samples (grey circles) back into the data set will predominantly
occur in regions characterized by higher probability. Consequently, these additional samples
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may not contribute significantly to the information content, aligning precisely with the
primary objective of the developed algorithm - the removal of low-informative data samples.

8000
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4000

Cumulative Shannon's entropy

2000

0 250 500 750 1000 1250 1500
Samples

Figure 3: Toy example of two-dimensional  Figure 4: Entropy increase with the addition
feature space with a sample probability dis-  of new data samples to the empty data set.
tribution.

This analogy further extends to the samples within clusters and their corresponding
target values. Samples with similar target values are in the denser probability regions and
therefore carry less information when compared to each other, especially when contrasted
with samples with distinct target values.

Furthermore, we have undertaken an endeavor to demonstrate the effectiveness of SUS
with information theory, employing the real imbalanced data set ” Accel” (details of which
will be provided in Section 4). The graphical representation in Figure 4 illustrates the
cumulative entropy (information) as new data samples, sourced from the actual data set,
are systematically introduced to an initially vacant data set.

To elaborate on the methodology, we initiate the process with an empty data set,
whereby each new sample (from the real data set) is incrementally added. Prior to incor-
poration, a Gaussian kernel density estimation (Zhang & Karunamuni, 1998) of probability
is executed to approximate the likelihood of the new data sample within a given region
(with respect to the data samples already added to the data set). Subsequently, Shannon’s
entropy (Shannon, 1948) for the new data sample is computed. The cumulative entropy
for all samples added up to that point is then plotted. Crucial to the understanding of
the process is the sequence in which the data samples are introduced. The black (full) line
represents a case where the samples chosen by SUS from the original data set are initially
added, followed by the integration of the remaining samples. The dot on the graph marks
the last data sample chosen by SUS. The red (dashed) line represents a case where samples
are randomly added. It is worth noting the rapid increase of entropy in the beginning,
followed by a tapering effect. This difference in the entropy increase is stronger in the case
where SUS samples are initially introduced suggesting that the selected data subset is not
random but rather optimized for entropy gain. It is also notable that there are no major
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entropy jumps after the dot in the black line, while there are some in the dashed line.

In conclusion, the underlying principle that governs the SUS technique is fundamentally
rooted in the optimization of information concerning the number of selected samples. More
precisely, SUS is designed to achieve the maximization of information capture within the
most minimal sample size feasible, while avoiding the loss of entire regions within the feature
space.

4. Experimental Evaluation

We designed an experimental setup targeted at assessing the performance of the SUS and
SUSiter strategies in the context of imbalanced regression tasks.

4.1 Data

For evaluating the performance of the presented approaches, we used three different types
of data sets - standard imbalanced data, synthetic high-dimensional imbalanced data, and
more complex age estimation image data sets IMDB-WIKI (Rothe et al., 2018) and AgeDB
(Moschoglou et al., 2017).

We selected 15 standard regression data sets from different imbalanced domains. Table 1
shows the main characteristics of these data sets. N represents the number of samples in
a data set, f.total is the number of features, f.nom is the number of nominal features and
f.num is the number of numeric predictors. nRare is the number of samples with relevance
value, determined by Ribeiro (2011), higher than the threshold (0.8) and finally %Rare
represents a percent of rare samples compared to the entire data set size. Figure 5 shows
target value distributions for each data set in the standard data group.

Furthermore, we created 5 synthetic imbalanced high-dimensional data since imbalanced
regression represents a special challenge in high-dimensions. We use two different methods
for generating the synthetic data. In the first method, the target value is generated by
applying a random linear regression model to the previously generated input and a Gaussian-
centered noise with an adjustable scale (make_regression) (Pedregosa et al., 2011). We also
resort to a Multilayer Perceptron (MLP) as a random function to generate the remaining
synthetic data sets. This assumes that the function can be learned again by an MLP. Our
network’s parameters are initialized with a standard Gaussian distribution. The features are
also drawn from a standard Gaussian distribution. The network consists of 3 hidden layers
(30, 10, 3 neurons per layer, respectively) and ReLU (Nair & Hinton, 2010) activation. The
final hidden layer is connected to a single neuron with linear activation to obtain target
values for a regression task. We designed the data sets to cover a wide range of sample
and feature sizes, their ratios, the percentage of rare data and to have present one or two
extremes.

Table 2 shows the main features of the generated synthetic high-dimensional data sets
and the methods employed for their generation, while Figure 6 show target value distribu-
tions for each data set in the synthetic HD data group.

Lastly, to evaluate the efficacy of our proposed method on deep learning architectures,
we have selected the more intricate age estimation image data sets, namely IMDB-WIKI
(Rothe et al., 2018) and AgeDB (Moschoglou et al., 2017). To ensure data quality, we filtered
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Table 1: Standard data sets information.

DataSet N ftotal fnom fnum nRare %Rare

Abalone 4177 8 1 7 679 16.3
Accel 1732 15 3 12 89 5.1
al 198 11 3 8 28 14.1

a2 198 11 3 8 22 11.1

a3 198 11 3 8 32 16.2

a4 198 11 3 8 31 15.7

ab 198 11 3 8 21 10.6

ab 198 11 3 8 33 16.7

a7 198 11 3 8 27 13.6
availPwr 1802 16 7 9 157 8.7
bank8FM 4499 9 0 9 288 6.4

boston 506 13 0 13 65 12.8
cpuSm 8192 13 0 13 713 8.7
fuelCons 1764 38 12 26 164 9.3
heat 7400 11 3 8 664 8.9
maxTorque 1802 33 13 20 129 7.2
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Figure 5: Distributions of target values of standard data sets.
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Figure 6: Distributions of target values of HD data sets.

Table 2: Synthetic high-dimensional data sets information.

DataSet N  ftotal fmom fnum nRare %Rare Method
syntheticHD_1 293 1000 0 1000 82 27.9  make_regression

syntheticHD_2 2228 6000 0 6000 89 23.3  make_regression
syntheticHD_3 500 20000 0 20000 44 8.8 MLP
syntheticHD_4 300 15000 0 15000 22 7.3 MLP
syntheticHD_5 700 15000 0 15000 37 5.2 MLP

out inadequately scored images and preprocessed them to be square-shaped with uniform
dimensions, as described in (Yang et al., 2021) and further elucidated in the Appendix.
Table 3 shows the main features of these data sets. im.dim represents a dimension of
images once processed. Since the sizes of these data sets are more significant than the
previous ones columns test.size and val.size show the corresponding test/validation number
of samples. Figure 7 show the age distribution in these data sets. The test and validation
data is balanced as well.

For all experiments, we obtained a relevance function for each data set through the
automated method proposed by Ribeiro 2011 (Python implementation by Kunz 2020). In
this method, the quartiles and interquartile range of the target variable distribution are
used for assigning a higher relevance to both high and low extreme values of the target
variable. Therefore, the considered data sets will have either one extreme (on the high or
low values of the target variable) or two extremes (high and low extremes of the target
variable). We consider a threshold of 0.8 on the relevance values in all data sets to obtain
the set of rare samples, as reported in SMOGN paper (Branco et al., 2017).

Table 3: Image data sets information.

DataSet N im.dim nRare %Rare test.size val.size

IMDB-WIKI 213553 224 x 224 17315 8.1 11022 11022
AgeDB 16488 224 x 224 293 1.8 2140 2140
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Figure 7: Distributions of target values for image data sets.

Important to note is that we selected the balanced test data set which implies that target
values of the test data set are seeded uniformly throughout the whole target range. Random
sampling from a data set would create imbalanced test data and consequently cause a bias
towards a more abundant target value region in model performance assessment. Selected
test data covers 20% of the whole corresponding data set and is completely held away from
the training process. All features were normalized before the learning algorithm stage. We
repeated every setting 30 times, shuffled random samples within data sets to avoid any
effects introduced by the specific order of samples, and used averages of mean squared error
(MSE) to report an evaluation metric.

4.2 Resampling Techniques

We applied to each of the 15 standard regression problems, 5 synthetic high-dimensional
data sets and 2 age estimation image data sets, 5 different resampling strategies. The
techniques that we tested are as follows:

e original data set (without any resampling)

e random under-sampling RU

SMOGN algorithm

SUS algorithm

SUSiter algorithm

4.3 Hyper-Parameter Analysis

Prior to presenting the results, it is imperative to highlight the hyper-parameters that exert
influence on the SUS algorithm. The foremost among these is the number of neighbors
in the knn model (Cover & Hart, 1967), denoted as k. Larger values of k facilitate the
detection of more expansive clusters. For instance, setting k = 3 implies that each cluster
accommodates a maximum of 4 samples, with at least one serving as the representative.
In the case of kK = 10, the cluster accommodates a maximum of 11 samples, potentially
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featuring only one representative. Consequently, larger values of k result in a more robust
reduction of samples. Figure 8 shows the reduction in the size of the Abalone data set
contingent upon the varying values of k in the knn model of the SUS algorithm. The focus
is specifically on the percentage reduction for the NS part of the dataset, while the rare
samples RS remain untouched for the learning stage. Notably, the percentage of reduction
plateaus around 74%. Although the general curve shape remains consistent across all data
sets, specific values fluctuate based on the unique characteristics of the data. All other
parameters in the algorithm are held constant.

Another critical hyper-parameter is the blobs. size, which, akin to the previous case,
influences the consideration of more neighbors as close. This, in turn, results in the detection
of larger clusters, contributing to a more pronounced reduction in the size of the data set,
specifically the N.S part. Figure 9 elucidates the impact of varying the blob;, parameter on
the strength of reduction. Similar to the preceding graph, the focus is solely on the effect
on the NS samples, while the rare samples remain unaltered. All other parameters are
maintained at a constant value, with k = 7 neighbors in the knn model.

The third hyper-parameter, spready,, assumes significance as larger values allow more
spread in target values within clusters. This facilitates the representation of only one sample
as a representative of a larger group, consequently augmenting the reduction in the data set’s
size. Figure 10 shows how the reduction varies with changes in spread;, parameters. The
data set used for demonstration remains consistent with the previous two figures (Abalone),
employing a k parameter of 7 and a bloby, of 75%.

Acknowledging the nature and rationale of the SUS algorithm, we conduct an analysis of
all hyper-parameters. However, it is evident from the preceding explanation that blobs. and
spready, primarily influence the algorithm by modulating the strength of reduction in the NS
part of the data set, a parameter also controlled by k. Consequently, in our experiments, we
systematically evaluate three distinct k parameter values (5, 7, and 10), maintaining blob;, =
75% and spready,. = 0.5 as constants. These specific values are established through rigorous
experimental evaluation, consistently yielding optimal results. As a result, we advocate
treating them as constants and recommend their adoption as default options. Owing to
their nuanced interplay with the k parameter, we refrain from presenting evaluations for
alternative bloby,. and spready, values, as their effects are inherently encapsulated by the k
parameter.
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4.4 Learning Method

We tested our algorithm on neural networks (NNs). Most of the recent major advances in
machine learning (ML) are achieved using advanced NNs, and therefore we consider NNs
the most promising learning algorithm currently existing in the ML community (Jumper
et al., 2021), (Brown et al., 2020), (Carion et al., 2020), (Goh et al., 2021). However, a
prerequisite for NNs to perform well is that the data is approximately balanced (Castro
& Braga, 2013), (Wang et al., 2016). Furthermore, authors of SMOGN, the state-of-the-
art algorithm, state that their algorithm displays the highest advantages when used with
random forests, and multivariate regression splines, and has a smaller impact when used
with neural networks (Branco et al., 2017). Therefore, we designed SUS and especially
SUSiter with a focus on NNs performance. We test 4 different architectures for the standard
data sets and synthetic high-dimensional data (deeper, shallower, wider and narrower) in
order to show that performance is not architecture-specific: (32, 16, 8), (8, 4, 2), (20, 5),
(10, 5). The specific values have shown to cause convergence of all models for all data sets
(within standard and synthetic high-dimensional data) and all sampling methods. Training
is performed in the same way for all data sets to avoid bias potentially introduced by
different training times or optimization methods. Moreover, for the two age estimation
data sets we use the ResNet architecture. Details of the training parameters for all data
sets are described in Appendix. In total, we evaluated 890 combinations.

4.5 Results

We present here the performance of SUS and SUSiter on the data sets we performed our
experiments on. Figures 11 and 13 summarize the most important results, for standard
and synthetic high-dimensional data sets. Values in the pie charts present a number of
the data sets belonging to the specific sampling strategy that performs the best with the
data set type, with root-mean-squared error (RMSE) being the evaluation metric. In these
figures only one setting k = 7 in SUS and SUSiter is considered. We use only one setting
for reporting the main result as it is fair taking into account that we use only one setting
for SMOGN, and a corresponding reduction factor for RU, even though better settings
for specific data sets might exist. The reported numbers are summed across all 4 neural
network architectures.

Figure 12 and 14 report the number of the best-performing techniques for any setting of
k € {5,7,10} in knn model for SUS techniques and corresponding RU factors, for standard
and synthetic high-dimensional data sets, respectively.

Since we test different architectures of the NNs, Table 4 and 5 show more detailed reports
which include information about the architectures and sampling strategies performance.
Table 4 reports numbers when only one setting k£ = 7 is considered, while Table 5 reports
results for any setting k € {5,7,10}.

Given the increased complexity of the age estimation image data sets in terms of size and
neural network configuration, we find it important to provide a comprehensive presentation
of evaluation results, substantiated by specific numerical values. The detailed outcomes of
this evaluation can be found in Table 6.
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Table 4: Number of best-performing data sets per sampling technique and per neural net-
work architecture. For SUS/SUSiter only one k = 7 is considered. AnySUS represents
either SUS or SUSiter.

DataSetType Architecture SUS SUSiter AnySUS SMOGN RU original

standard (32, 16, 8) 3 4 7 5 1 2
(8, 4, 2) 2 2 4 8 1 2

(20, 5) 4 4 8 4 0 3

(10, 5) 7 1 8 6 0 1

synthetic D (32, 16, 8) 0 2 2 1 0 2
(8, 4, 2) P 1 3 0 1 1

(20, 5) 0 2 2 1 0 2

(10, 5) 1 2 3 0 1 1

Table 5: Number of best performing data sets per sampling technique and per neural
network architecture. For SUS/SUSiter we consider k € {5,7,10}. AnySUS represents
either SUS or SUSiter.

DataSetType Architecture SUS SUSiter AnySUS SMOGN RU original

standard (32, 16, 8) 6 4 10 4 0 1
(8, 4, 2) 6 2 8 5 1 1

(20, 5) 4 5 9 4 1 1

(10, 5) 6 2 8 6 0 1

synthetic HD (32, 16, 8) 0 2 2 1 0 2
(8, 4, 2) 3 1 4 0 1 0

(20, 5) 0 2 p 1 0 p

(10, 5) 1 2 3 0 1 1
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Table 6: Evaluation of the performance for the image data sets.

DataSet Technique MSE k=5 k=7 k=10
IMDB-WIKI MSE 138.06

RU 134.12

SMOGN  136.09

SUS 134.70 131.98 132.52

SUSiter 132.53 134.36 131.53
AgeDB MSE 101.60

RU 106.05

SMOGN  117.29

SUS 101.70 99.01  99.87

SUSiter 103.55 101.86 100.42

5. Discussion

In the previous section results of our experimental evaluation are presented. We have shown
that SUS and SUSiter outperform the existing state-of-the-art approaches for imbalanced
regression problems. However, there are different aspects to discuss.

As SUS acts only by removing some of the samples from the data set, random under-
sampling is the closest existing method, and it is interesting to see how they compare. In
our experiments, SUS outperformed RU approximately 60% of the time. The reduction
of evaluation score is on average approximately 15%. For some data sets the difference
in evaluation scores is especially large. For example, the fuelCons data set trained on a
neural network with the (20, 5) architecture yields almost 4 times better results if pre-
processing was done with SUS than with RU. The reason could be that some data sets
include many isolated samples in feature space along with larger clusters of data, which
causes RU to remove proportionally many outlying samples which are important for the
algorithm’s learning ability. Furthermore, random under-sampling has a much wider distri-
bution of evaluation scores compared to SUS as can be seen in Figure 15. This example is
with Accel data set, k = 7 in knn model for SUS sampling technique, corresponding factor
is chosen for RU and (20, 5) architecture of the neural network. Due to inherently random
process, some sub-selections of samples can be very detrimental to the model performance.
With availPwr data set, and the same NN architecture as already described, approximately
one out of 20 runs with RU is an outlier, with at least 10 times higher evaluation score.

Another aspect to discuss is how SUS and SUSiter compare. Even though SUSiter ex-
ploits more of the available data, SUS seems to work a bit better in practice for standard
data sets (Figures 11 and 12). However, SUS has better evaluation scores than SUSiter
only 50% of the time. A possible explanation lies in the fact that when SUS outperforms
SUSiter it does so by improving the evaluation score by 15% on average, but the reverse is
only true by 12%. The distribution of evaluation scores is typically very similar for these
two methods, as shown in Figure 16. Parameters used in the figure are kK = 7, Accel data
set and (20,5) neural network architecture. Nevertheless, SUSiter performs better than SUS
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Figure 15: RU vs SUS. Distribution of eval- Figure 16: SUS vs SUSiter. Distribution of
uation scores, for Accel data set, kK = 7 and evaluation scores, for Accel data set, k =7
(20, 5) neural network architecture. and (20, 5) neural network architecture.

for high-dimensional setting, as can be seen in Figures 13 and 14. As mentioned earlier, this
technique reduces the chances for overfitting to the training data set, which is especially
important in high-dimensional settings. Furthermore, parameter k£ also affects the rela-
tionship between SUS and SUSiter. We note that depends on & which algorithm performs
better. One setting of k can cause SUS to be better, while the other can cause SUSiter to
be better. Finally, the two image data sets show that both SUS and SUSiter improve the
baseline performance and outperform other techniques like RU or SMOGN, with the main
differences coming from k parameter. Best performing values of SUS and SUSiter are very
close, with SUS winning one data set and SUSiter winning the other.

The extent to which SUS reduces the size of the data set is dependent upon the inherent
characteristics of the data. As illustrated in Figure 17, standard data set sizes after the
SUS selection are depicted across different values of the parameter k. It is noteworthy that
smaller data sets exhibit a considerably higher percentage of data samples selected by SUS.
Larger data sets typically encompass regions of elevated density within the feature space,
consequently resulting in a more pronounced reduction by SUS in comparison to smaller
data sets, as exemplified by datasets al-a7. Also, as discussed earlier in subsection 4.3,
increasing the values of k tends to make the reduction more pronounced.

Execution speed is another aspect to be taken into account. SUS has shown to perform
from 2 up to 30 times faster than SMOGN, depending on the data set which is used for
benchmarking. The difference between execution speeds is the most significant, approxi-
mately 30 times, for larger data sets. SUSiter has shown to perform at approximately the
same speed as SMOGN. We compare speeds on a desktop iMac 2017 machine with 4 cores,
and 3.5 GHz Quad-Core Intel Core i5 processor.

Computation of nearest neighbors can be computationally intensive for high-volume data in
practical settings. Nevertheless, the computation of knn tensors is parallelizable, since the
computations are independent of each other, which is a natural fit for GPU computation (Li
& Amenta, 2015). Furthermore, many methods addressing this challenge in a distributed
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Figure 17: Size of standard data sets after SUS selection for different k values.

way have been proposed (Zhang et al., 2012), (Sun et al., 2015), (Maillo et al., 2015).

To illustrate the applicability of our method in reality, consider a theoretical computation
for a data set consisting of 1 billion 100-dimensional samples using a brute-force nearest
neighbor search on a modern high-end GPU like the NVIDIA A100:

e Distance Computation: Each distance calculation between two 100-dimensional points
involves approximately 300 operations. Therefore, for 1 billion points, the total num-
ber of operations required is approximately 3 x 10'! operations.

e GPU Capability: The NVIDIA A100 GPU is capable of performing around 19.5
teraflops (FP32), meaning it can process approximately 19.5 x 10'? operations per
second.

e Estimated Computation Time: Assuming full utilization of the GPU, the time re-
3x10'! operations ~
19.5x1012 operations/sec "

quired to compute the distances for 1 billion points would be:
15.3 ms

This estimate assumes ideal conditions with full GPU utilization and does not account
for additional factors such as memory transfer, indexing, or reduction operations required
to identify the nearest neighbors. Even with some overhead, these numbers demonstrate
that our method, leveraging the power of modern GPUs, is not computationally prohibitive.
It is capable of handling large-scale data sets efficiently.

Our approach officially introduces three new hyper-parameters: parameter k, which
controls the number of neighbors in knn model, the parameter blob; which controls the
close neighbors threshold and parameter spready, which controls the target spread thresh-
old for close neighbors. However, we treat bloby,. = 75% and spread;, = 0.5 as constants
and assess only parameter k. While we find that setting k& = 7 typically provides good
performance, there can be better choices for specific data sets. In general, higher k, e.g. 10,
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performs better for data sets with a higher number of features while smaller k, e.g. 5, tends
to perform better for data sets with a smaller number of samples. The latter makes sense
taking into account that higher & causes a stronger reduction of samples - which for data
sets already small in size can be very detrimental. With this in mind, searching for optimal
hyper-parameters values for a specific dataset can be reduced to variable k, with the optimal
parameter being most likely in the range we performed the experiments (k € {5,10}).

As shown by Blagus and Lusa (2013), SMOTE - based techniques are expected to in-
troduce bias and perform worse than RU for high-dimensional setting. On the other hand,
random under-sampling does not asses the importance of samples that are removed and we
consider that SUS and SUSiter have an edge here. Our experiments suggest that SMOGN
does under-perform on synthetic imbalanced high-dimensional data compared to standard
data sets.

On a higher level, there is a potential for applying SUS to contemporary forms of
learning, such as federated learning, where data is distributed across multiple clients with
decentralized data ownership and privacy concerns (Tang et al., 2022). In these scenarios,
data imbalances at the client level can result in skewed global models that perform poorly
on under-represented target ranges (Tang et al., 2024), (Tang et al., 2021). By integrating
SUS into federated learning, it becomes possible to locally balance datasets before aggregat-
ing model updates, thereby enhancing the overall performance of the global model. Beyond
federated learning, SUS can also be advantageous in distributed computing environments,
and any context where maintaining a balanced representation of data is critical for the
success of predictive modeling tasks.

We introduced both SUS and SUSiter algorithms, illustrating that they typically surpass
existing techniques in performance. Detailed rationale behind this method is presented in
Section 3. Specifically, we have incorporated theoretical insights from information theory,
accompanied by entropy demonstrations, to further explain the underlying mechanisms
of the method. Across standard data sets, SUS exhibits a slightly superior performance
compared to SUSiter, whereas for synthetic high-dimensional datasets, SUSiter tends to
outperform. Image data sets seem to be suitable for both algorithms. Generally, problems
characterized by a higher number of features and samples prove more suitable for the effec-
tive application of both these algorithms.

6. Conclusion

In this manuscript, we introduce an innovative approach for selective under-sampling termed
SUS, alongside its iterative counterpart SUSiter, designed to address the challenges asso-
ciated with imbalanced regression. The SUS algorithm represents an under-sampling tech-
nique that takes into account the significance of each sample within a data set, considering
both feature and target levels. The core concept revolves around the recognition that certain
samples serve as more important representatives of the data set than others. SUSiter, the
iterative version, makes use of all available data samples while maintaining the advantages
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of under-sampling. It achieves this by selecting a different but carefully chosen subset of
data in each iteration of the learning process.

The key contributions of this paper are the proposal of a new pre-processing method
SUS and its iterative version SUSiter.
We evaluate results using 15 standard, 5 synthetic high-dimensional data sets, specifically
designed to represent different kinds of data distributions, and 2 complex age estimation im-
age data sets, on neural networks as learners. Experiments on the evaluation data sets show
that SUS/SUSiter typically outperform SMOGN, random under-sampling and performance
on the original data set. The difference is more significant on data sets with high-feature
numbers and high-dimensional data sets. SUS performs slightly better than SUSiter for
standard data while SUSiter performs better with high-dimensional setting. Both SUS and
SUSiter demonstrate superior performance with image data sets.

Future work involves the exploration of the following aspects: i) how SUS and SUSiter
impact different learners (decision trees, support vector machines etc.) ?, ii) In comparison
to SMOGN and other existing techniques, which types of problems are more apt for the
application of SUS/SUSiter methods? and iii) do SUS and SUSiter exhibit comparable effi-
cacy when employed alongside advanced neural network architectures such as transformers
(Vaswani et al., 2023)7

Appendix A.

A.1 Parameters

Default values for SMOGN are used (Kunz, 2020): k = 5 specifies the number of neigh-
bors to consider for interpolation in over-sampling, pert = 0.02 represents the amount of
perturbation to apply to the introduction of Gaussian Noise, balanced sampling is selected,
replacement is not selected in under-sampling and relevance function threshold is set to be
0.8, as in the original paper (Branco et al., 2017). Random under-sampling was done with a
factor corresponding to the automatic reduction performed by SUS. Each data set’s samples
were selected by a different amount in SUS, and for a fair comparison, we took each data
set’s reduction factor in SUS to be used by random under-sampling technique.

A.2 Learning parameters

Architectures tested for standard and high-dimensional data sets: (32, 16, 8), (8, 4, 2), (20,
5), (10, 5). Listed architectures represent a number of hidden layers and the corresponding
number of neurons per layer. Training is run for 300 epochs, we use Adam optimization
(Kingma & Ba, 2014), and a learning rate of 1072

A.3 IMDB-WIKI

The IMDB-WIKI dataset (Rothe et al., 2018) is a comprehensive collection of facial images
designed for age estimation from a single image input. The original dataset includes a total
of 523,000 face images, each annotated with corresponding age labels. Of these, 460,700
images were sourced from the IMDB website, with an additional 62,300 images obtained
from Wikipedia. The dataset’s creation follows the procedure outlined in (Yang et al.,
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2021), which begins with an initial curation step to filter out images with low face scores
(Rothe et al., 2018). Following this, a balanced validation and test set is constructed across
the supported age range.

After curation, the final dataset consists of 191,500 images for training, with 11,000
images each allocated to validation and testing. To ensure consistency, the dataset is divided
into 1-year age bins, covering ages from 0 to 186 years.

For data pre-processing, the images are first resized to 224 x 224 pixels. During training,
we apply a standard data augmentation strategy (He et al., 2016), which includes zero-
padding each image with 16 pixels on all sides. The images are then randomly cropped back
to their original size, followed by horizontal flipping. Finally, the images are normalized to
a pixel value range of [0, 1].

A.4 AgeDB

The AgeDB dataset (Moschoglou et al., 2017) is a carefully curated, in-the-wild age database
characterized by accurate, noise-free labels. Like the IMDB-WIKI dataset, its primary pur-
pose is to estimate age based on visual appearance. The original dataset contains 16,488
images. Following a construction approach similar to that used for IMDB-WIKI, as de-
scribed in (Yang et al., 2021), the AgeDB training set includes 12,208 images, covering an
age range from 0 to 101 years. The dataset is organized into bins, with the most populated
bin containing 353 images and the least populated bin containing just one image. The
validation and test sets are carefully balanced, each containing 2,140 images.

As with IMDB-WIKI, the AgeDB images are resized to 224 x 224 pixels during pre-
processing. The dataset also undergoes the same pre-processing steps used for IMDB-WIKI,
ensuring consistency across both datasets.

A.5 ResNet

For all experiments involving the IMDB-WIKI and AgeDB datasets, we utilize the ResNet-
50 model (He et al., 2016). Each model is trained over 90 epochs using the Adam optimizer
(Kingma & Ba, 2014), starting with an initial learning rate of 1073, which is reduced by a
factor of 0.1 at the 60th and 80th epochs. The batch size is consistently set to 256.
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