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ABSTRACT 

 

The primary challenge for visually impaired and illiterate individuals is 

accessing and understanding visual content, which hinders their ability to 

navigate environments and engage with text-based information. This research 

addresses this problem by implementing an artificial intelligence (AI)-

powered multilingual image-to-speech technology that converts text from 

images into audio descriptions. The system combines optical character 

recognition (OCR) and text-to-speech (TTS) synthesis, using natural language 

processing (NLP) and digital signal processing (DSP) to generate spoken 

outputs in various languages. Tested for accuracy, the system demonstrated 

high precision, recall, and an average accuracy rate of 0.976, proving its 

effectiveness in real-world applications. This technology enhances 

accessibility, significantly improving the quality of life for visually impaired 

individuals and offering scalable solutions for illiterate populations. The 

results also provide insights for refining OCR accuracy and expanding 

multilingual support. 
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1. INTRODUCTION 

In an increasingly digital world, access to visual content is essential for daily communication, 

education, and navigation [1], [2]. However, visually impaired and illiterate individuals face significant 

challenges in interpreting such content, limiting their ability to fully engage with their surroundings and access 

critical information [3]−[5]. Assistive technologies have made progress in enhancing accessibility, but gaps 

still exist in providing accurate and real-time solutions that effectively convert visual information into a format 

accessible to these individuals. Recent advancements in artificial intelligence (AI) [6]−[10], offer promising 

solutions by combining optical character recognition (OCR), text-to-speech (TTS), and natural language 

processing (NLP) to transform images into spoken descriptions. This research focuses on implementing and 

evaluating a multilingual image-to-speech system that amplifies AI to address these accessibility challenges. 

A key problem for the visually impaired is the inability to access printed or digital text in images 

[11]−[13], which is exacerbated when navigating diverse environments or consuming visual content in multiple 

languages [14], [15]. While existing OCR and TTS technologies provide basic text-to-audio conversion  

[16], [17], their accuracy often declines in real-world scenarios where text may be distorted, partially visible, 

or displayed in multiple languages [18]. Furthermore, many current solutions are monolingual, limiting their 

utility for users in multilingual environments [19]−[21]. Illiterate individuals also face similar barriers in 
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accessing text-based information [22]−[27]. Thus, there is a clear need for a system that can accurately 

recognize and describe text from images across different languages in real time. Several studies have explored 

OCR and TTS technologies for accessibility, but few have integrated these technologies into a robust, AI-

powered solution capable of providing accurate multilingual descriptions. Previous work by [28] demonstrated 

that advanced OCR models could improve text recognition rates, especially in noisy or complex image 

environments. However, combining these technologies with AI-driven NLP and digital signal processing 

(DSP) techniques remains underexplored. AI advancements now enable more sophisticated and context-aware 

systems that can enhance both the accuracy and the scope of accessibility solutions for the visually impaired. 

The proposed solution integrates state-of-the-art OCR and TTS systems with AI-powered NLP and 

DSP techniques to create a multilingual image-to-speech technology. By leveraging these technologies, the 

system is designed to accurately recognize text in multiple languages, even under challenging image 

conditions, and provide real-time audio descriptions for users. The system not only addresses the challenge of 

visual text accessibility for visually impaired users but also broadens its scope to support illiterate individuals, 

enabling them to “hear” text content that they cannot read. This multilingual capability distinguishes it from 

other existing solutions. The innovative value of this research lies in its approach to combining multiple AI 

technologies into a cohesive, user-friendly system that enhances real-time accessibility. The system achieves 

high precision and recall, as demonstrated by an average accuracy rate of 0.976 in tests, making it a reliable 

tool for real-world applications. Additionally, its multilingual functionality extends the technology’s usefulness 

to diverse populations. The findings contribute to the body of knowledge in assistive technologies by providing 

a framework for further improvements in OCR accuracy and TTS integration, offering a scalable solution to 

accessibility challenges faced by visually impaired and illiterate individuals. 

 

 

2. METHOD 

This research aims to develop, implement, and evaluate a multilingual image-to-speech system 

specifically designed to support visually impaired and illiterate individuals in accessing written information. 

The system integrates OCR technology to accurately extract text from images, ensuring high-quality text 

recognition across multiple languages. Once the text is extracted, a TTS synthesis module converts it into 

natural-sounding speech, allowing users to listen to the content in their preferred language. By combining OCR 

and TTS, the system enhances accessibility, enabling individuals with visual or reading impairments to interact 

with textual information more independently. The overall architecture, which outlines the key components and 

their interactions, is depicted in Figure 1, providing a comprehensive overview of the system’s functionality. 
 

 

 
 

Figure 1. Multilingual image-to-speech system architecture 
 
 

2.1.  Data collection 

To develop an AI-powered multilingual image-to-speech technology aimed at enhancing accessibility 

for visually impaired users, a comprehensive data collection process is essential. The first step involves 

gathering a diverse image dataset containing text in various languages, including signs, printed documents, and 

labels. The goal is to ensure that the dataset reflects different fonts, sizes, orientations, and backgrounds to 

enhance the robustness of the model. For this purpose, we can utilize the international conference on document 

analysis and recognition (ICDAR) datasets, which provide benchmark images of printed text in multiple 

languages and formats. These datasets are widely recognized in the field for their comprehensive range of text 

types and conditions. Additionally, crowdsourcing can be employed to allow users to upload images containing 



      

 

  

 

text, further enriching the dataset with real-world examples. This approach not only broadens the dataset but 

also captures varied conditions under which text appears, enhancing the model’s applicability. 

The second step involves collecting a high-quality audio dataset that consists of recordings 

corresponding to the text extracted from images, ensuring accurate pronunciation and intonation for each 

language. For this purpose, Mozilla’s Common Voice project serves as an excellent source. It is an open-source 

initiative that collects diverse voice samples in multiple languages, allowing contributors to record themselves 

reading sentences. This dataset provides the variability and richness needed to create effective TTS capabilities. 

In addition, contracting native speakers or voice actors can enhance the dataset’s quality by ensuring accurate 

pronunciation and emotional expression. The annotation process is crucial for preparing the image dataset for 

training. It involves manually annotating images with bounding boxes around text areas and providing 

corresponding text transcriptions in multiple languages. Annotation tools such as LabelImg or RectLabel is used 

to create bounding boxes around the text, ensuring that various orientations and layouts are captured.  

 

2.2.  Optical character recognition 

The system employs the Tesseract OCR engine with Python’s pytesseract library for extracting text 

from images. The workflow begins with image acquisition from various sources, including scans and photos. 

Pre-processing steps such as resizing, noise reduction, and contrast enhancement are used to improve text 

visibility. Text regions are identified using techniques like edge detection and machine learning, and the 

detected text is converted into machine-readable format. Post-processing further refines this text, correcting 

errors and improving formatting. 

In the pre-processing phase, we standardize image dimensions to ensure consistent processing across 

various images. This involves resizing all images to a fixed width and height, maintaining aspect ratio when 

necessary. The resizing formula as in (1) adjusts the image size while preserving proportions. This 

standardization simplifies subsequent image analysis by ensuring uniform input dimensions, which helps in 

maintaining consistency in feature extraction and processing, ultimately improving the accuracy and efficiency 

of the OCR system. 

 

𝑁𝑒𝑤 𝑊𝑖𝑑𝑡ℎ = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑊𝑖𝑑𝑡ℎ 

𝑁𝑒𝑤 𝐻𝑒𝑖𝑔ℎ𝑡 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐻𝑒𝑖𝑔ℎ𝑡 𝑥 (
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑊𝑖𝑑𝑡ℎ

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑊𝑖𝑑𝑡ℎ 
) (1) 

 

In addition, we applied filters to remove unwanted artifacts and noise from the image. This involves 

using Gaussian blur, which smooths the image by averaging the intensities of surrounding pixels. The Gaussian 

function, given as in (2), this filter reduces noise and enhances image quality by minimizing high-frequency 

variations, ensuring that the OCR system processes cleaner and more accurate data. 
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Contrast enhancement was applied to improve text visibility through contrast stretching. This 

technique adjusts pixel intensities using the formula as in (3). In this formula, 𝐼𝑖𝑛 represents the original pixel 

intensity, 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 are the minimum and maximum intensities in the image, and 𝐿 is the number of 

intensity levels. This adjustment enhances contrast, making text and details more distinct. 

 

𝐼𝑜𝑢𝑡 =
𝐼𝑖𝑛−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
𝑥(𝐿 − 1) (3) 

 

We then identified regions in the image that likely contain text using edge detection. This technique 

calculates edge strength to locate text boundaries. The edge strength is determined by the formula as in (4). 

Here, 
𝜕𝐼

𝜕𝑥
 represent the gradients of pixel intensity 𝐼 in the horizontal and vertical directions, respectively. This 

calculation highlights areas with high changes in intensity, indicating potential text regions. 

 

𝐸𝑑𝑔𝑒 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =  √(
𝜕𝐼

𝜕𝑥
)

2
+ (

𝜕𝐼

𝜕𝑦
)

2
 (4) 

 

After identifying potential text regions, we performed text recognition to convert these regions into 

machine-readable text using the OCR engine. The Tesseract OCR engine employs pattern recognition 

algorithms to analyze the detected text areas, matching them to known character patterns. This process involves 

comparing image segments with a database of character templates to accurately identify and transcribe the text.  

 



                  

    

 

2.3.  Speech synthesis 

The recognized text is converted into speech using the Python Google text-to-speech (gTTS) library. 

This process begins with NLP, which includes tokenization to break down the text into smaller units, such as 

words or sentences, and language detection to apply accurate pronunciation rules and phonetic adjustments. In 

the subsequent phase, DSP techniques are employed. The first step is word-to-phoneme conversion, where text 

is translated into its phonetic representation. For example, “hello” is converted to phonemes /h/, /ə/, /l/, /oʊ/. 

This is expressed as in (5). 

 

𝑃ℎ𝑜𝑛𝑒𝑚𝑒 = 𝑤𝑜𝑟𝑑 → 𝑃ℎ𝑜𝑛𝑒𝑡𝑖𝑐 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (5) 

 

Phoneme synthesis converts phonetic representations into speech sounds, where sound waves are 

generated to represent each phoneme. We implemented WaveNet models to enhance this process. WaveNet 

uses deep neural networks to produce more natural and human-like sound waves by accurately capturing the 

complexities of human speech, this is expressed as in (6). 

 

𝑃ℎ𝑜𝑛𝑒𝑚𝑒 𝑆𝑜𝑢𝑛𝑑 = 𝑃ℎ𝑜𝑛𝑒𝑚𝑒 → 𝑊𝑎𝑣𝑒𝑁𝑒𝑡 𝑀𝑜𝑑𝑒𝑙− > 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑆𝑜𝑢𝑛𝑑 𝑊𝑎𝑣𝑒 (6) 

 

Finally, waveform generation produces a high-quality audio waveform from the synthesized 

phonemes. This step involves converting the synthesized phoneme sounds into an audio signal that can be 

played back. The waveform is generated using advanced techniques to ensure clarity and naturalness in the 

speech output. The waveform is represented as in (7). 

 

𝑊𝑎𝑣𝑒𝑓𝑜𝑟𝑚 = 𝑃ℎ𝑜𝑛𝑒𝑚𝑒 𝑆𝑜𝑢𝑛𝑑𝑠− > 𝐴𝑢𝑑𝑖𝑜 𝑆𝑖𝑔𝑛𝑎𝑙 (7) 

 

2.4.  Evaluation parameters for text-to-speech conversion metrics 

In developing an effective TTS system, it is essential to establish clear evaluation parameters that 

measure the quality and intelligibility of synthesized speech. These parameters help determine how well the 

TTS system can produce audio that is both clear and natural-sounding, particularly for applications aimed at 

assisting visually impaired users. The following metrics provide a comprehensive framework for assessing the 

performance of TTS systems: 

‒ Phoneme synthesis quality: this parameter measures the accuracy and precision with which the TTS 

system generates phonemes the distinct units of sound in speech. A higher value (on a scale of 0 to 1) 

indicates better performance, suggesting that the system effectively captures the nuances of different 

languages and dialects. It is typically assessed through subjective listening tests and objective evaluations, 

such as comparing synthesized phonemes against a reference set. 

‒ Waveform clarity: this qualitative parameter evaluates the overall audio quality of the synthesized speech. 

A “high” rating signifies that the audio output has minimal distortion, noise, and artifacts, leading to clear 

and intelligible speech. Waveform clarity is essential for ensuring that listeners can easily understand the 

generated audio, which is particularly important for applications aimed at aiding visually impaired users. 

‒ Speech naturalness: this parameter assesses the degree to which synthesized speech resembles natural 

human speech. It evaluates factors such as intonation, rhythm, and expressiveness. An “improved” rating 

indicates that the TTS system has enhanced it is ability to produce engaging and relatable audio output. 

This is often determined through user feedback and expert evaluations, as well as comparison with natural 

speech samples. 

 

2.5.  Evaluation metrics for optical character recognition performance and text recognition accuracy 

In assessing the effectiveness of OCR systems and text recognition across different languages, several 

key evaluation metrics are employed. These metrics offer insights into the accuracy and reliability of the 

systems, ensuring that they meet the needs of various applications. 

‒ Precision is a critical metric that quantifies the accuracy of the OCR system in identifying relevant text.  

It is defined as the ratio of true positive predictions (correctly identified text) to the total predicted 

positives (both correct and incorrect identifications). A high precision score indicates that when the 

system predicts text, it is likely to be accurate, minimizing false positives. 

‒ Recall, also known as sensitivity or true positive rate, measures the OCR system’s ability to identify all 

relevant instances of text in a given dataset. It is calculated as the ratio of true positive predictions to the 

total actual positives (all instances of text present in the images). A high recall score indicates that the 

system successfully captures most of the actual text, thereby reducing the likelihood of missing characters 

or words.  



      

 

  

 

‒ F1 score serves as a balanced measure that combines both precision and recall into a single metric. It is 

calculated as the harmonic mean of precision and recall, providing a comprehensive view of the system’s 

overall performance. A high F1 score signifies that the OCR system performs well in both accurately 

identifying relevant text and capturing as much text as possible from the images.  
 
 

3. RESULTS AND DISCUSSION 

The implementation of the multilingual image-to-speech system, which integrates OCR and TTS 

synthesis, has produced promising results. The OCR component of the system exhibited high performance in 

text extraction, achieving an average precision rate of 0.976. This high precision indicates the system’s 

robustness in accurately identifying and extracting text from various types of images, including scanned 

documents, digital photos, screenshots, and handwritten notes. 

The precision metric reflects the proportion of correctly identified text regions out of the total 

identified text regions. A precision rate of 0.976 signifies that the OCR system is highly effective at minimizing 

false positives, where non-text areas are incorrectly recognized as text. This high accuracy is crucial for 

applications where the correct interpretation of text is essential, such as converting printed or handwritten 

documents into machine-readable formats. The successful implementation of this OCR component underscores 

the effectiveness of the chosen algorithms and techniques in processing diverse image inputs. By accurately 

extracting text, the system lays a solid foundation for the subsequent TTS synthesis phase, which relies on the 

quality of the extracted text to generate clear and coherent spoken output. This integrated approach enhances 

the accessibility and usability of the image-to-speech system for visually impaired and illiterate individuals 

across multiple languages. 

Table 1 provides a detailed evaluation of OCR accuracy across different image types, showcasing the 

system’s performance in various scenarios. The table includes metrics such as precision, recall, and F1 score, 

which are critical for assessing the effectiveness of text extraction. For scanned documents, the OCR system 

achieves the highest accuracy with a precision of 0.98, recall of 0.97, and an F1 score of 0.975. This indicates 

that the system reliably extracts text from scanned documents with minimal errors and high completeness. 

Digital photos follow with a precision of 0.95 and a recall of 0.94, resulting in an F1 score of 0.945. This 

reflects strong performance, though slightly less accurate than scanned documents due to potential image 

quality variations. Screenshots show a precision of 0.96 and recall of 0.95, with an F1 score of 0.955. The 

system performs well in extracting text from screenshots, demonstrating its versatility across different image 

types. Meanwhile, handwritten notes exhibit the lowest accuracy, with a precision of 0.90, recall of 0.88, and 

an F1 score of 0.890, while still effective, the system faces more challenges with handwritten text due to its 

inherent variability and complexity. 
 

 

Table 1. OCR accuracy across different image types 
Image type Precision Recall F1 score 

Scanned documents 0.98 0.97 0.975 

Digital photos 0.95 0.94 0.945 

Screenshots 0.96 0.95 0.955 

Handwritten notes 0.90 0.88 0.890 

 
 

Table 2 provides a comparative analysis of text recognition accuracy across various languages using 

the OCR system. The metrics presented include precision, recall, and F1 score, which reflect the system’s 

performance in recognizing text from different linguistic contexts. For English, the OCR system demonstrates 

exceptional accuracy with a precision of 0.97 and a recall of 0.96, resulting in a high F1 score of 0.965. This 

indicates that the system reliably identifies and extracts English text with minimal errors. Spanish shows strong 

performance with a precision of 0.95 and a recall of 0.94, leading to an F1 score of 0.945. This reflects the 

system’s capability to handle Spanish text effectively. Mandarin has lower accuracy compared to European 

languages, with a precision of 0.92, a recall of 0.91, and an F1 score of 0.915. This is attributed to the 

complexity of Mandarin characters and script. French and Italian also show high performance, with F1 scores 

of 0.935 for both languages, indicating robust recognition capabilities. Indonesian has a precision of 0.93 and 

a recall of 0.92, resulting in an F1 score of 0.925, demonstrating effective text recognition. German achieves a 

precision of 0.96 and a recall of 0.95, with an F1 score of 0.955, highlighting its high accuracy in text 

recognition. Japanese and Korean have lower scores, with F1 scores of 0.895 and 0.905, respectively, reflecting 

challenges in recognizing these scripts. Arabic shows the lowest accuracy with a precision of 0.88, a recall of 

0.87, and an F1 score of 0.875, due to the intricacies of the Arabic script. 

Table 3 presents the performance metrics of the TTS conversion system used in this research. The 

phoneme synthesis quality is measured at 0.95, indicating a high level of accuracy in generating phoneme 

sounds from text, which is crucial for producing intelligible speech. Waveform clarity is rated as high, 



                  

    

 

reflecting the effectiveness of the waveform generation process in creating clear and distortion-free audio 

signals. Lastly, speech naturalness is noted as improved, highlighting that the synthesized speech sounds more 

natural and human-like, thanks to the implementation of advanced techniques such as WaveNet models. 

Together, these metrics demonstrate that the TTS system delivers high-quality and realistic speech output, 

enhancing overall user experience and accessibility. 

Meanwhile, Table 4 presents execution times for components of an AI-powered multilingual image-

to-speech system, measured in milliseconds (ms). Image preprocessing takes 50 ms, efficiently preparing 

images for OCR. The OCR phase requires 120 ms to extract text, reflecting the complexity of recognizing 

various text formats. Following this, text cleaning occurs in 30 ms, where the extracted text is organized for 

speech conversion. The TTS conversion is the most time-intensive component, taking 200 ms to synthesize 

natural-sounding speech from the cleaned text, highlighting the computational demands of multilingual 

synthesis. Lastly, audio playback requires just 15 ms, demonstrating the system’s efficiency in delivering audio 

outputs. The total execution time of 415 ms indicates the cumulative duration from image input to audio output, 

suggesting the system’s responsiveness for real-time applications aimed at assisting visually impaired users. 

 

 

Table 2. Text recognition accuracy with different languages 
Language Precision Recall F1 score 

English 0.97 0.96 0.965 

Spanish 0.95 0.94 0.945 

Mandarin 0.92 0.91 0.915 

French 0.94 0.93 0.935 

Indonesian 0.93 0.92 0.925 
German 0.96 0.95 0.955 

Italian 0.94 0.93 0.935 

Japanese 0.90 0.89 0.895 

Korean 0.91 0.90 0.905 
Arabic 0.88 0.87 0.875 

 

 

Table 3. Performance metrics of TTS conversion 
Metric Value 

Phoneme synthesis quality 0.95 

Waveform clarity High 

Speech naturalness Improved 

 

 

Table 4. Execution times of different components in the ai-powered multilingual image-to-speech system 
Component Execution time (ms) Notes 

Image preprocessing 50 Time taken to load and preprocess the image 

OCR 120 Time taken for the OCR model to extract text 

Text cleaning 30 Time taken for cleaning and formatting the extracted text 

TTS conversion 200 Time taken to convert the cleaned text to speech 
Audio playback 15 Time taken to play the generated audio 

Total execution time 415 Sum of all execution times for the complete process 

 

 

The high OCR accuracy achieved by the system underscores its effectiveness in accurately extracting 

text from images. The rigorous pre-processing techniques, such as contrast stretching and noise reduction, 

played a crucial role in enhancing text visibility and thus improving the performance of the OCR. Contrast 

stretching adjusted pixel intensity levels to make text stand out more distinctly against its background, while 

noise reduction minimized artifacts that could hinder text recognition. Together, these techniques facilitated 

more accurate text extraction by the OCR engine. Further enhancement in the system’s performance is 

attributed to the use of advanced models like WaveNet for phoneme synthesis. WaveNet, a deep generative 

model for creating raw audio waveforms, significantly improved the naturalness and quality of the synthesized 

speech. Unlike traditional speech synthesis methods, WaveNet models generate more natural and human-like 

speech by modeling the audio waveform at a finer level of detail. This advancement is reflected in the improved 

phoneme synthesis quality, where the generated speech closely resembles natural human speech in terms of 

fluidity and expressiveness. 

The system’s ability to perform well across different languages and text types demonstrates it is 

robustness and reliability in TTS conversion. It effectively handles multiple languages, including those with 

complex scripts and phonetic structures, providing accurate and clear spoken output. The integration of 

WaveNet for waveform generation further enhances the realism of the synthesized speech, making it more 
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engaging and easier to understand for users. Overall, the combination of high-accuracy OCR and advanced 

TTS technologies offers a powerful solution for enhancing accessibility for visually impaired and illiterate 

individuals. By bridging the gap between visual and auditory information, the system makes text-based content 

more accessible through spoken output. This integration represents a significant advancement in assistive 

technology, enabling users to access information that was previously less accessible due to visual impairments. 

Future work could focus on expanding multilingual support to include a broader range of languages 

and dialects, as well as improving real-time TTS conversion capabilities. Enhancements in these areas would 

further increase the system’s versatility and applicability in various contexts, making it a more inclusive tool 

for users with diverse needs. Additionally, improving real-time TTS conversion capabilities is crucial for 

enhancing the system’s usability. A real-time conversion would allow users to receive spoken output instantly 

as text is recognized, making the system more responsive and practical for dynamic environments. This 

enhancement would be particularly beneficial in applications such as live events or real-time document reading, 

where immediate feedback is essential. By addressing these areas, the system’s versatility would be 

significantly increased. Users with varying linguistic and accessibility needs would benefit from a more 

adaptable and efficient tool. This progress would ensure that the system remains relevant and useful in diverse 

contexts, making it a more inclusive solution for individuals with visual impairments or literacy challenges 

worldwide. 
 

 

4. CONCLUSION 

The implementation of the multilingual image-to-speech system effectively aligns with the 

expectations outlined in the introduction. The integration of OCR and TTS synthesis demonstrated high 

accuracy in text extraction and improved speech generation quality, validating the system’s capability to bridge 
visual and auditory information for enhanced accessibility. The successful use of advanced models like 

WaveNet for phoneme synthesis and waveform generation has resulted in natural and high-quality speech 

output, meeting the initial goal of providing a reliable and inclusive tool for visually impaired and illiterate 

individuals. The results and discussion highlight the system’s strong performance across various languages and 

text types, affirming it is versatility and practical utility. Looking ahead, future research could focus on 

expanding multilingual support to include a broader range of languages and dialects, thereby increasing the 

system’s global applicability. Additionally, enhancing real-time TTS capabilities could further improve the 

system’s responsiveness and user experience. The prospect of further development includes refining these 

features to make the system more adaptable and useful in diverse contexts. By addressing these areas, future 

studies can build on the current research to enhance accessibility technologies, ensuring they meet the evolving 

needs of users worldwide. 
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