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ABSTRACT 

In the era of the internet of things (IoT), managing the massive influx of data 

with minimal latency is crucial, particularly within fog computing 

environments that process data close to its origin. Traditional methods have 

been inadequate, struggling with the high variability and volume of IoT data, 

which often leads to processing inefficiencies and poor resource allocation. 

To address these challenges, this paper introduces a novel machine learning-

driven approach named real-time data preprocessing in IoT-based fog 

computing using machine learning algorithms (IoT-FCML). This method 

dynamically adapts to the changing characteristics of data and system 

demands. The implementation of IoT-FCML has led to significant 

performance enhancements: it reduces latency by approximately 0.26%, 

increases throughput by up to 0.3%, improves resource efficiency by 0.20%, 

and decreases data privacy overhead by 0.64%. These improvements are 

achieved through the integration of smart algorithms that prioritize data 

privacy and efficient resource use, allowing the IoT-FCML method to 

surpass traditional preprocessing techniques. Collectively, the enhancements 

in processing speed, adaptability, and data security represent a substantial 

advancement in developing more responsive and efficient IoT-based fog 

computing infrastructures, marking a pivotal progression in the field. 
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1. INTRODUCTION 

The internet of things (IoT) has dramatically transformed how we interact with the physical world, 

integrating intelligence into everyday objects and enabling them to communicate and make decisions.  

This widespread adoption of IoT has led to the generation of massive amounts of data at the edge of the 

network, necessitating innovative approaches to data processing and management. Fog computing, which 

extends cloud computing to the edge of the network, has emerged as a pivotal technology in this context.  

It aims to reduce latency, improve bandwidth utilization, and enhance the overall efficiency of IoT systems 

by processing data closer to its source [1], [2]. 

Figure 1 shows a security architecture involving three entities such as the user, a cloud server, and a 

trusted third party. The working principal centers around mutual authentication, a security mechanism 

ensuring that both the user and the cloud server verify each other's identities before initiating any 

communication. Here, the trusted third party plays a crucial role, possibly as a certificate authority or 

authentication server, that both the user and the cloud server trust. This entity could facilitate the exchange of 

credentials or cryptographic keys that enable mutual authentication [3]. Upon successful authentication,  



a secure channel is established between the user and the cloud server, allowing for safe data exchange, 

service requests, and transactions, all under the supervision of the trusted third party to prevent unauthorized 

access and ensure data integrity and confidentiality. This framework is fundamental to preserving security in 

cloud computing, where data and resources are accessed over potentially insecure networks [4], [5]. 

 

 

 
 

Figure 1. Fundamental architecture of fog computing network 

 

 

Recent trends in IoT and fog computing highlight a shift towards more autonomous, intelligent 

systems capable of real-time decision-making. However, the sheer volume and velocity of data generated by 

IoT devices present significant challenges in real-time data preprocessing. Traditional cloud-centric models 

often fail to meet the requirements of latency-sensitive applications, leading to a research gap in developing 

more efficient, adaptive, and scalable real-time data preprocessing methods within the fog computing 

paradigm [6]. 

The application of machine learning algorithms in optimizing these preprocessing tasks holds 

promise in bridging this gap. By leveraging machine learning, systems can dynamically adapt to changing 

data patterns and network conditions, ensuring efficient data processing and resource utilization. However, 

despite its potential, the integration of machine learning into fog computing for IoT systems is still in its 

nascent stages, with several challenges to overcome. These include ensuring data privacy, managing resource 

constraints, and maintaining system adaptability in highly dynamic environments [7]–[10]. 

The convergence of IoT, fog computing, and machine learning opens up new avenues for research 

and development. By addressing the current limitations and harnessing the strengths of these technologies, 

we can pave the way for more responsive, efficient, and intelligent IoT systems. Such advancements have 

profound implications across various sectors, including healthcare, smart cities, and industrial automation, 

where real-time data processing and decision-making are crucial. 

In exploring the landscape of real-time data preprocessing in IoT-based fog computing 

environments, several noteworthy contributions have been made in recent years. The integration of machine 

learning algorithms for enhancing efficiency and adaptability has been a focal point of research. However, 

while these studies have laid a solid foundation, they also highlight various challenges and limitations that 

warrant further investigation. Varun et al. [11] presented a framework leveraging convolutional neural 

networks (CNNs) for data preprocessing in fog computing nodes. Their method significantly improved data 

processing speeds by automatically filtering irrelevant data before it reached the cloud. However, a notable 

drawback is the study acknowledged the high computational overhead of CNNs, making it less viable for 

devices with limited processing capabilities. Gowrishankar et al. [12] introduced an adaptive algorithm based 

on reinforcement learning that dynamically allocates resources in fog computing environments to optimize 

data preprocessing tasks. Their approach demonstrated improved system adaptability and resource efficiency. 

However, a drawback of the study is that the complexity of the algorithm led to difficulties in real-time 

implementation, especially in highly volatile IoT environments. Marković et al. [13] proposed a novel data 

anonymization technique within the fog layer to address privacy concerns during the preprocessing of 

sensitive information. While their method effectively enhanced data privacy, a drawback was that found to 

introduce latency, particularly with large datasets, which could compromise the real-time processing 

requirements of IoT applications.  

Khan et al. [14] explored the use of edge-based machine learning models to preprocess data locally, 

reducing the need for data transmission to the cloud. Their work showed promising results in decreasing 

latency and bandwidth usage. However, a drawback highlighted in the study was the challenge of 



maintaining model accuracy over time without regular updates, which could require significant data transfers, 

thus negating some of the benefits. Saravanan et al. [15] developed a distributed ledger technology (DLT)-

based approach for secure data preprocessing in fog computing, aiming to improve both transparency and 

security. While their solution effectively addressed trust issues, a drawback was that it introduced substantial 

computational and storage overhead, questioning its scalability in larger IoT deployments. These studies 

illustrate the dynamic and evolving nature of research in real-time data preprocessing within IoT-based fog 

computing environments. They underscore the critical balance between enhancing processing efficiency, 

ensuring privacy and security, and maintaining system adaptability and scalability. As such, they highlight 

the need for innovative solutions that can address these multifaceted challenges in a holistic manner. 

 

 

2. PROPOSED METHOD  

Figure 2 shows the proposed methodology, to establish a multi-tiered IoT-based fog computing 

model. Data collection commences with harvesting raw inputs from IoT devices, simulating a high-velocity 

data stream. The preprocessing phase involves algorithmic noise filtering, feature extraction, and 

normalization to prepare datasets for machine learning application [16], [17]. We select machine learning 

algorithms suited to real-time analytics, emphasizing decision efficiency and computational lightness. 

Supervised learning models are trained on a partitioned dataset, employing cross-validation to mitigate 

overfitting while optimizing performance parameters [18]–[20]. 

 

 

 
 

Figure 2. The proposed methodology of real-time data preprocessing in IoT-based fog computing using 

machine learning algorithms (IoT-FCML) 

 

 

Post-training, machine learning models are embedded within fog nodes. Their performance is 

assessed through key metrics: latency, throughput, and resource allocation. These are benchmarked against 

conventional preprocessing paradigms to evaluate the efficacy and improvements our machine learning-

driven method offers. Security protocols are integral, ensuring data integrity and confidentiality. The system 

undergoes iterative optimization, responsive to empirical data and user-centric feedback, striving for 

enhanced operational excellence within the fog computing sphere [21]–[23]. 

 

 

2.1.  Proposed IoT-FCML 

Figure 3 shows the presents a hierarchical structure that integrates the IoT, fog computing, and 

cloud computing to optimize data preprocessing. IoT devices at the bottom layer generate data, which is first 

transmitted to the fog layer, specifically to micro data centers. These centers are equipped with an IoT-FCML 

model, designed to preprocess the data efficiently in real-time. The preprocessing includes noise reduction, 

normalization, and feature extraction to prepare data for analysis. 

Once preprocessed, the data is passed through an optimization algorithm within the fog layer, 

ensuring the preprocessing is tuned for the best performance regarding speed and accuracy. This step is 

crucial for adapting to the variable nature of IoT-generated data and system demands [24], [25]. After the 



optimization, the processed data can be sent to the cloud data center for further analysis or long-term storage. 

The cloud layer offers more extensive computational resources and storage capacity, suitable for complex 

analytics and historical data analysis that the fog layer cannot perform due to resource constraints. 

Finally, the performance analysis phase evaluates the efficiency and effectiveness of the 

preprocessing and optimization steps. This analysis considers factors like latency, throughput, and resource 

utilization, ensuring that the system meets the real-time processing requirements of IoT applications. The 

proposed method leverages the strengths of fog computing-proximity to data sources and reduced latency, 

with the extensive processing power of cloud computing, providing a balanced and optimized approach to 

data management in IoT networks. 

 

 

 
 

Figure 3. Proposed IoT-FCML 

 

 

2.2.  Proposed mathematical equations 

The proposed models analyze the most critical parameters of system demand, latency, processing 

capacity, data privacy, and resource utilization in real-time fog computing-based IoT. Such models support 

dynamic resource sharing, reduce delay, and process data efficiently with the help of optimization through 

machine learning. A common objective function combines the above parameters to achieve adaptable, secure, 

and scalable re rocessin  of the data of the IoT. 



2.2.1. System demand model 

The system demand model calculates the total data demand from all IoT devices at a given time, 

enabling dynamic resource allocation in the fog computing layer to address real-time processing needs 

efficiently. The system demand model as given in (1). 

 

𝐷(𝑡) = ∑ 𝑑𝑖(𝑡)𝑛
𝑖=1  (1) 

 

Where 𝐷(𝑡) is the total system demand at time 𝑡, and 𝑑𝑖(𝑡) is the demand of the 𝑖𝑡ℎ IoT device at time 𝑡. 

 

2.2.2. Latency model 

The latency model breaks down total system latency into components attributed to fog computing, 

network transmission, and cloud processing. Minimizing this latency is vital for real-time applications, 

ensuring swift data processing and timely decision-making within the IoT infrastructure. The latency of 

proposed model is calculated by using (2). 

 

𝐿 = 𝐿𝑓𝑜𝑔 + 𝐿𝑛𝑒𝑡𝑤𝑜𝑟𝑘 + 𝐿𝑐𝑙𝑜𝑢𝑑  (2) 

 

Where 𝐿 is the total latency, 𝐿𝑓𝑜𝑔 is the processing latency in the fog layer, 𝐿𝑛𝑒𝑡𝑤𝑜𝑟𝑘  is the network latency, 

and 𝐿𝑐𝑙𝑜𝑢𝑑  is the processing latency in the cloud layer. The goal is to minimize L, especially 𝐿𝑓𝑜𝑔 as it's the 

first processing layer for real-time data. 

 

2.2.3. Throughput model 

The throughput model assesses the volume of data processed per unit of time and resource, providing 

a measure of the system’s efficiency. Enhancing throughput is key to handling the vast streams of IoT data 

swiftly and effectively in fog computing environments. The throughput of proposed model is given in (3). 

 

𝑇 =  
1

𝐿
×

𝑅

𝑉
 (3) 

 

Where 𝑇 is the throughput, 𝑉 is the volume of processed data, and 𝑅 is the available resources. Maximizing 𝑇 

indicates improved system performance. 

 

2.2.4. Data privacy model 

The data privacy model ensures the confidentiality of IoT data by applying encryption algorithms 

before processing or transmission. This step is essential for maintaining user trust and complying with data 

protection regulations within the fog computing framework. Data privacy model as given in (4). 

 

𝑃(𝑑𝑖) = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝑖 , 𝑘) (4) 

 

Where 𝑃(𝑑𝑖) is the privacy-preserving function for data 𝑑𝑖from the 𝑖𝑡ℎ IoT device, and 𝑘 is the encryption 

key. This equation doesn't directly reduce latency or improve throughput but is essential for ensuring data 

confidentiality. 

 

2.2.5. Resource efficiency model 

The resource efficiency model evaluates how effectively the fog computing resources are utilized in 

relation to their full capacity. It aims to maximize the processing output while avoiding resource overuse, 

ensuring a sustainable and balanced workload distribution, the resources efficiency is calculated using (5).  

 

𝐸 =
𝑈

𝑅
 (5) 

 

Where 𝐸 is the efficiency, 𝑈 is the utilization of resources, and 𝑅 is the total available resources. 𝐸 should be 

maximized under the constraint that 𝑈 ≤ 𝑅, ensuring no resource is over-utilized. 

 

2.2.6. Optimization function 

The optimization function is a mathematical formulation aimed at minimizing latency and maximizing 

throughput and resource efficiency. It serves as the guiding principle for the proposed system's resource 

management and operational adjustments in real-time, the proposed optimization function is given in (6). 

Objective: minimize 𝐿 and maximize 𝑇 and E subject to 𝐷(𝑡) and 𝑃. 



𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝛼𝐿 − 𝛽𝑇 − 𝛾𝐸) (6) 

 

Where 𝛼, 𝛽, 𝛾 are weighting factors indicating the importance of each objective (latency, throughput, and 

efficiency). 

 

2.3.  Proposed optimizing real-time data preprocessing in IoT-based fog computing using machine 

learning algorithms 

Creating an overarching mathematical equation that encapsulates the optimization of IoT real-time 

data preprocessing using machine learning, while taking into account factors such as system demand, latency, 

throughput, data privacy, and resource efficiency, involves synthesizing the individual objectives into a 

singular objective function. This unified equation aims to balance these multiple aspects through weighted 

parameters, reflecting their relative importance to the system's overall performance and objectives. Optimize 

proposed algorithm as calculated using (7). 

 

Optimize(𝑂) = 𝑤1 × (
1

∑ 𝐿𝑖
𝑛
𝑖=0

) + 𝑤2 ∑ 𝑇𝑖 + 𝑤3 ∑ 𝐸𝑖 −𝑛
𝑖=0 𝑤4 ∑ 𝐷𝑖(𝑡) − 𝑤5 ∑ 𝐶(𝑃𝑖)𝑛

𝑖=0
𝑛
𝑖=0

𝑛
𝑖=0  (7) 

 

𝐿𝑖 , 𝑇𝑖 , 𝐸𝑖, 𝐷𝑖 and 𝐶(𝑃𝑖) now represent the latency, throughput, resource efficiency, system demand, and cost 

of privacy for the 𝑖𝑡ℎ IoT device, respectively. The sums ∑ .𝑛
𝑖=0  aggregate the contributions of each device 

from the 0th to the nth, offering a comprehensive view of the entire IoT ecosystem. The optimization 

objective (𝑂) now directly accounts for the performance and demands of each individual device, ensuring 

that the optimization strategy is effective across the entire network of IoT devices. 

 

 

3. RESULTS AND DISCUSSION 

Table 1 presents the simulation parameters essential for evaluating the proposed optimization 

method in IoT-based fog computing. It specifies the number of IoT devices, their data generation rates, 

latency targets, resource capacities of fog nodes, and privacy constraints through encryption overheads. 

These parameters are pivotal for assessing the method's impact on system performance, including processing 

efficiency and data security. 

 

 

Table 1. Simulation parameter for evaluation of proposed optimization method 
SI. No Description Values 

1 Number of IoT devices 150 

2 Data generation rate (KB/s/device) 100 KB/s 
3 Latency requirements (ms) 100 ms 

4 Resource limits 2 GHz CPU, 4 GB RAM per fog node 

5 Privacy constraints (Encryption overhead ms) 5-20 ms 

 

 

Table 2 demonstrates that the proposed optimization method surpasses the conventional methods 

across all evaluated performance metrics. It emphasizes the effectiveness of the proposed method in lowering 

latency, boosting throughput, improving resource efficiency, and reducing the overhead involved in securing 

data privacy. Figure 4 presents a performance comparison of the proposed method with conventional 

methods in relation to system demand. 

 

 

Table 2. Performance analysis comparing system demand handling 
Performance metric Proposed optimization 

method 

Static resource 

allocation 

Basic machine learning 

optimization 

Traditional fog 

computing 

Latency (ms) 75 95 100 110 

Throughput (KB/s) 1,500 1,150 1,200 1,000 

Resource efficiency (%) 90 80 75 70 

Data privacy overhead (ms) 9 15 20 25 

 

 

Table 3 encompasses a broader set of performance metrics beyond efficiency, including latency, 

throughput, data privacy overhead, resource utilization, scalability, and reliability. It provides a clear 

comparison between the proposed optimization method and the other conventional methods. Figure 5 

presents a performance comparison of the proposed method with conventional methods in relation to 

efficiency. 



 
 

Figure 4. The performance analysis of the proposed method compared to conventional methods in relation to 

system demand 

 

 

Table 3. Comparative performance analysis 
Performance metric Proposed optimization 

method 
Static resource 

allocation 
Basic machine learning 

optimization 
Traditional fog 

computing 

Latency (ms) 75 95 100 110 

Throughput (KB/s) 1,500 1,150 1,200 1,000 

Efficiency (%) 90 80 75 70 

Data privacy overhead (ms) 9 15 20 25 
Resource utilization (%) 85 75 70 65 

Scalability (Number of devices) 500 300 400 200 

Reliability (%) 99 95 96 93 

 

 

 
 

Figure 5. The performance analysis of the proposed method compared to conventional methods in relation to 

efficiency 

 

 

Table 4 provides a comparison of various data privacy-related performance metrics across the 

proposed optimization method and the three conventional methods. The metrics include the overheads for 

data encryption and anonymization, compliance with privacy policies, overhead for secure data transmission, 

and latency due to data access controls. Figure 6 presents a performance comparison of the proposed method 

with conventional methods in relation to data privacy. 



Table 4. Data privacy performance analysis 
Performance metric Proposed 

optimization method 
Static resource 

allocation 
Basic machine 

learning optimization 
Traditional fog 

computing 

Data encryption overhead (ms) 9 15 20 25 

Data anonymization overhead (ms) 7 12 18 22 

Privacy policy compliance (%) 98 90 85 80 

Secure data transmission overhead (ms) 8 14 19 24 
Data access control latency (ms) 10 20 25 30 

 

 

 
 

Figure 6. The performance analysis of the proposed method compared to conventional methods in relation to 

data privacy 

 

 

4. CONCLUSION 

The paper presented a IoT-FCML for real-time data preprocessing in IoT-based fog computing, 

showing marked improvements over traditional approaches. Specifically, the proposed method enhanced 

latency by approximately 0.26%, increased throughput by up to 0.32%, improved resource efficiency by 

0.20%, and reduced data privacy overhead by 0.64%, reflecting significant advancements in both 

performance and security. These enhancements signify a substantial step forward in developing adaptive, 

efficient IoT systems, particularly in dynamic and resource-constrained fog computing environments.  

The integration of machine learning algorithms has proven to be a pivotal factor in the system's ability to 

dynamically adjust to varying data streams and operational demands, ultimately leading to smarter, more 

responsive IoT infrastructures. With these results, the paper sets a precedent for future research to expand 
upon, indicating a bright horizon for the intersection of IoT, fog computing, and intelligent data processing 

techniques. This research promises advancements in machine learning algorithms tailored for IoT scalability, 

sophisticated privacy preservation techniques, enhanced resource allocation strategies, and the exploration of 

edge computing integration. These developments aim to bolster the IoT ecosystem, enabling it to handle 

growing data volumes and complexity with greater efficiency and security. 
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