The Efficacy Mechanism of AI-Driven Human-Machine Collaborative Innovation under the Three-Dimensional Interactive Framework: Mediation by Digital Capabilities, Moderation by HRM Transformation, and Empirical Evidence from Multiple Industries

Xuebin Huang (Author)

Guangzhou College of Technology and Business, Guangdong 510800, Guangzhou province, China

Jianwen Shen (Primary Contact)

Guangzhou City University of Technology, Guangzhou province, China

Biao Zhang (Author)

Guangzhou College of Technology and Business, Guangdong 510800, Guangzhou province, China

Qianyi Chen (Author)

Guangzhou College of Technology and Business, Guangdong 510800, Guangzhou province, China

Hao Li (Author)

Guangzhou College of Technology and Business, Guangdong 510800, Guangzhou province, China

Keywords:

Artificial Intelligence, Human-Machine Collaborative Innovation, Digital Capabilities, HRM Transformation, Mediating Effect, Moderating Effect

Supporting Agencies:

Interim Results of the Project (BDPG25142)By Guangdong Educational Evaluation Association, .Interim Results of the Project (GDZLGL25037)By Guangdong Association for Higher Education Teaching Administration.

Published

31-12-2025

Abstract

To address the triple mismatch dilemma of "technology application-capability requirements-HRM
system" in AI-driven human-machine collaborative innovation, this paper, based on the perspective of HRM transformation, employs SEM and cross-case comparison methods to reveal its efficacy mechanism, drawing on publicly available data from 326 multi-industry enterprises and 2024 case studies of 12 benchmark enterprises. The study finds that AI positively influences innovation efficacy through three-dimensional mechanisms of "task reconfiguration, information interaction, and decision complementarity," with the decision complementarity effect being the strongest (β=0.35, p<0.001). Employees' three-tier capabilities of "basic operations-digital cognition-innovative application" fully mediate this relationship (total mediating effect =0.29, 95%CI=[0.21,0.37]), with innovative application capability contributing the most (51.7%); The three-dimensional mechanisms of HRM transformation differentially moderate this process-capability diagnosis moderates digital cognition (β=0.18, p<0.01), hierarchical training moderates innovative application (β=0.21, p<0.001), and institutional safeguards moderate basic operations (β=0.16, p<0.01). Industry differences manifest as manufacturing focusing on basic operations and task reconfiguration, while service industry emphasizing digital cognition and decision complementarity. This paper constructs a three-dimensional framework of "AI technology - digital capabilities-HRM system," providing theoretical support for enterprise HRM transformation, increasing the success rate of human-machine collaborative innovation by 35%, and offering practical pathways for multiple industries to overcome technology implementation challenges.

References
  • [1] 王红卫, 李珏, 刘建国, 等. 人机融合复杂社会系统研究[J]. 中国管理科学, 2023, 31(7): 1-21.

  • [2] 何勤, 张岩涛, 王欣. 人工智能时代的人机协同与员工劳动时间[J]. 经济管理, 2025, 47(9): 171-189.

  • [3] Gartner. Gartner发布2025年十大战略技术趋势[EB/OL].

  • [4] 高中华. 平台化转型中员工主动变革行为激发机制研究——战略共识的调节作用[J]. 中国管理科学, 2023, 31(9): 189-201.

  • [5] 戴岭, 姜浩哲, 田爱丽. 人机协同视角下教育数字化转型测评体系构建——兼论人机协同的动态演进路径[J]. 远程教育杂志, 2025, 43(5): 80-88.

  • [6] 汪子昊, 徐选华, 王宗润等. “知识—信念”认知框架下人机协同决策的影响研究[J]. 中国管理科学,2024, 32(8): 98-109.

  • [7] 李祥文, 宋程, 丁帅. 人机协同决策中的人因能力评估研究[J]. 中国管理科学, 2024, 32(3): 145-155.

  • [8] 杨晓艳. 社交媒体赋能的非正式学习对员工数字能力与创新绩效的影响机制研究[D]. 合肥工业大学, 2024.

  • [9] 柴王军, 岳磊磊, 武洛生. 人工智能赋能全民健身公共服务供需适配的作用机制与实现路径[J]. 西安体育学院学报, 2025, 42(1): 47-57.

  • [10] 原新, 王丽晶, 方守林. 数字经济发展会影响低技能劳动力职业转换吗[J]. 人口研究, 2024, 48(5): 82-97.

  • [11] 高蓉. 数字化转型对员工创新行为的影响研究[J]. 科技进步与对策. 2024, 41(12): 1-10. DOI: https://doi.org/10.69979/3029-2700.24.10.012

  • [12] 欧盟委员会. 数字能力框架(2024版)[R]. 布鲁塞尔: 欧盟委员会数字化转型总局, 2024.

  • [13] Revilla E, Gil-Garcia J R,Pardo T A. Human-AI Collaboration in Public Services: A Systematic Review and Future Directions[J]. Government Information Quarterly, 2023, 40(2): 101892.

  • [14] Yam K C, Reynolds S,Elhosseini M T. Trust in Artificial Intelligence: A Meta-Analysis[J]. Journal of Management, 2024, 50(3): 1123-1150.

  • [15] Hair J F, Black W C, Babin B J, et al.Multivariate Data Analysis[M]. 8th ed. Upper Saddle River: Pearson Education Limited, 2019.

PDF (Chinese)
Issue
Vol. 1 No. 1 (2025)
Section
文章
License

How to Cite

Xuebin Huang, Jianwen Shen, Biao Zhang, Qianyi Chen, & Hao Li. (2025). The Efficacy Mechanism of AI-Driven Human-Machine Collaborative Innovation under the Three-Dimensional Interactive Framework: Mediation by Digital Capabilities, Moderation by HRM Transformation, and Empirical Evidence from Multiple Industries. Al Lnnovations and Applications, 1(1), 46-56. https://doi.org/10.63944/7bv7.AIA