The statistical applications of K-Nearest Neighbors, Back Propagation Neural Networks, Support Vector Machines, Decision Trees, Random Forests, and Gradient Boosting Algorithms in data classification

Authors

  • Lv Hao 廣東第二師範學院 數學學院 Author

DOI:

https://doi.org/10.63944/c59hqf21

Keywords:

K-Nearest Neighbor; BP Neural Network; Support Vector Machine; Decision Tree; Random Forest; Extreme Gradient Boosting

Abstract

The Internet is closely related to people’s daily life now, and various types of Internet industries have emerged, such as IT and finance. People can’t live without finance, so Internet finance has become a popular trend. Traditional banks that lack the convenience of Internet finance are in the predicament of losing customers.

This article uses six machine learning methods to predict and classify customer churn in a European bank. According to the results of preliminary descriptive statistics and visual analysis, we clean, process and transform the data. We use the processed data to establish K-Nearest Neighbor, Back Propagation Neural Network, Support Vector Machine, Decision Tree, Random Forest and eXtreme Gradient Boosting models. We select the optimal model by analyzing, evaluating and comparing the evaluation indicators.

By analyzing customer information and the optimal model, we improve bank’s competitiveness and influences by proposing strategies to the bank.

 

References

[1] 史翼璿 . 基於資料採擷的銀行客戶流失預測的研究 [D]. 內蒙古大學 ,2022.

[2] 張孟迪 . 基於 Logistic 回歸和 XGBoost 的銀行信用卡客戶流失預測 [D], 山東大學 ,2021.

[3] 杜紅 . 城市商業銀行客戶流失風險預警與應對策略研究 [D]. 華北電力大學 ,2019.

[4] 張莉莉 . 基於集成模型的銀行個人客戶流失預警 [D]. 蘭州大學 ,2021.

[5] 時丹蕾 , 杜寶軍 . 基 於 BP 神經網路的銀行客戶流失預測 [J]. 科學技術創新 ,2021(27):104-106.

[6] 石寒 . 基於重採樣和集成學習的信用卡客戶流失預測研究 [D]. 華中農業大學 ,2022.

[7] 盧美琴 , 吳傳威 . 大資料背景下商業銀行貴賓客戶流失的組合預測研究 [J]. 電子商務 ,2019(06):55-57.

[8] 沈哲 . 基於資料採擷的 G 銀行信用卡客戶流失預測研究 [J]. 中國市場 ,2022(08):49-52.

[9] 姚博 . 客戶流失預測模型研究及其應用 [D]. 西北大學 ,2017.

[10] 程勇 , 梁吉祥 . 基於資料採擷的掌銀客戶流失預測建模方法研究 [J]. 中國金融電腦 ,2019(08):51-60.

Downloads

Published

2025-06-20

Issue

Section

文章